cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290009 Coefficients in expansion of 691*E_4*E_8*E_12.

Original entry on oeis.org

691, 563040, 305307360, 131729109120, 34085393629920, 4587384326495040, 302027782271806080, 10484303481804821760, 226150164335242994400, 3395290157453914541280, 38308806132696980919360, 343030311387007824977280, 2537869275676057371269760
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A008410 (E_8), A008411 (E_4^3), A029828 (691*E_12).
Cf. A290010.

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
    691*E4[x]^3*E12[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

G.f.: 691*E_4^3*E_12.

A010839 Expansion of Product_{k >= 1} (1-x^k)^48.

Original entry on oeis.org

1, -48, 1080, -15040, 143820, -985824, 4857920, -16295040, 28412910, 38671600, -424520544, 1268350272, -1211937160, -4306546080, 18293091840, -23522231424, -26299018683, 137218594320, -150999182320, -134713340160
Offset: 0

Views

Author

Keywords

Examples

			1 - 48*x + 1080*x^2 - 15040*x^3 + 143820*x^4 - 985824*x^5 + 4857920*x^6 - 16295040*x^7 + ...
		

References

  • Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

Crossrefs

Column k=48 of A286354.
Cf. A000203, A082558, A126581, A282330 (E_8^3), A282332 (E_6*E_8*E_10 = E4*E_10^2), A290009, A290010.

Formula

Let b(q) be the determinant of the 3 X 3 Hankel matrix [E_4, E_6, E_8 ; E_6, E_8, E_10 ; E_8, E_10, E_12]. G.f. is -691*b(q)/(q^2*1728^2*250). - Seiichi Manyama, Jul 17 2017
a(n) = (A290010(n+2) - A290009(n+2) + 691*(A282330(n+2) - A282332(n+2)))/(1728^2*250). - Seiichi Manyama, Jul 19 2017
a(0) = 1, a(n) = -(48/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Aug 13 2023
Showing 1-2 of 2 results.