A290057 Number T(n,k) of X-rays of n X n binary matrices with exactly k ones; triangle T(n,k), n>=0, 0<=k<=n^2, read by rows.
1, 1, 1, 1, 3, 4, 3, 1, 1, 5, 13, 23, 30, 30, 23, 13, 5, 1, 1, 7, 26, 68, 139, 234, 334, 411, 440, 411, 334, 234, 139, 68, 26, 7, 1, 1, 9, 43, 145, 386, 860, 1660, 2838, 4362, 6090, 7779, 9135, 9892, 9892, 9135, 7779, 6090, 4362, 2838, 1660, 860, 386, 145, 43, 9, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 3, 4, 3, 1; 1, 5, 13, 23, 30, 30, 23, 13, 5, 1; 1, 7, 26, 68, 139, 234, 334, 411, 440, 411, 334, 234, 139, 68, 26, 7, 1; ...
Links
- Alois P. Heinz, Rows n = 0..40, flattened
- C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
- Index entries for sequences related to binary matrices
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1, add(b(n-j, i-t, 1-t), j=0..min(i, n)))))(i*(i+1-t)) end: T:= (n, k)-> b(k, n, 1): seq(seq(T(n, k), k=0..n^2), n=0..7);
-
Mathematica
b[n_,i_,t_]:= b[n, i, t] = Function[{m, jm}, If[n>m, 0, If[n==m, 1, Sum[b[n-j, i-t, 1-t], {j, 0, jm}]]]][i*(i+1-t), Min[i, n]]; T[n_, k_]:= b[k, n, 1]; Table[T[n, k], {n, 0, 7}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Aug 09 2017, translated from Maple *)
Formula
T(n,floor(n^2/2)) = A290058(n).
T(n,k) = T(n,n^2-k).
Comments