cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290106 a(1) = 1; for n > 1, if n = Product prime(k)^e(k), then a(n) = Product (k)^(e(k)-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Examples

			For n = 21 = 3*7 = prime(2)^1 * prime(4)^1, a(n) = 2^0 * 4^0 = 1*1 = 1.
For n = 360 = 2^3 * 3^2 * 5^1 = prime(1)^3 * prime(2)^2 * prime(3)^1, a(n) = 1^2 * 2^1 * 3^0 = 1*2*1 = 2.
		

Crossrefs

Differs from A290104 for the first time at n=21.

Programs

Formula

Multiplicative with a(prime(k)^e) = k^(e-1).
a(n) = A003963(n) / A156061(n).
a(n) = A003963(A003557(n)) = A003963(n/A007947(n)).