A290107 a(1) = 1; for n > 1, a(n) = product of distinct exponents in the prime factorization of n.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1
Keywords
Examples
For n = 36 = 2^2 * 3^2, the only distinct exponent that occurs is 2, thus a(36) = 2. For n = 144 = 2^4 * 3^2, the distinct exponents are 2 and 4, thus a(144) = 2*4 = 8. For n = 4500 = 2^2 * 3^2 * 5^3, the distinct exponents are 2 and 3, thus a(4500) = 2*3 = 6.
Links
Crossrefs
Programs
-
Mathematica
Table[If[n == 1, 1, Apply[Times, Union[FactorInteger[n][[All, -1]] ]]], {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
-
PARI
A290107(n) = factorback(vecsort((factor(n)[, 2]), ,8));
-
Scheme
(define (A290107 n) (A156061 (A181819 n)))