A290109 a(1) = 1; for n > 1, a(n) = x1^(x2^(x3^(x4^...))) where x1, x2, ... are the exponents of the primes present (listed from the smallest prime to the largest) in the prime factorization of n.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 9, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 4, 1, 1, 1, 3, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1
Keywords
Examples
For n = 300 = 2^2 * 3^1 * 5^2 we have a(300) = 2^(1^2) = 2. For n = 600 = 2^3 * 3^1 * 5^2 we have a(600) = 3^(1^2) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Scheme
(define (A290109 n) (if (= 1 n) 1 (expt (A067029 n) (A290109 (A028234 n))))) ;; Antti Karttunen, Aug 27 2017