A290110 a(n) = the discovery rank of the factorization pattern of the sequence of divisors of n.
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 9, 4, 4, 2, 10, 3, 4, 5, 9, 2, 11, 2, 12, 4, 4, 4, 13, 2, 4, 4, 14, 2, 15, 2, 9, 6, 4, 2, 16, 3, 8, 4, 9, 2, 17, 4, 14, 4, 4, 2, 18, 2, 4, 6, 19, 4, 15, 2, 9, 4, 11, 2, 20, 2, 4, 8, 9, 4, 15, 2, 21, 7, 4, 2, 22, 4, 4, 4, 23, 2, 24, 4, 9, 4, 4, 4, 25, 2, 8, 9, 26, 2, 15, 2, 23, 11
Offset: 1
Keywords
Examples
The divisors of 17 are {1, 17}. They follow the pattern {1, p} which is pattern number 2 in discovery order. a(17)=2. The divisors of 28 are {1, 2, 4, 7, 14, 28}. They follow the pattern {1, p, p^2, q, p*q, p^2*q}, which is pattern number 9 in discovery order. a(28)=9. From _Michael De Vlieger_ and _Antti Karttunen_, Mar 07 & 08 2018: (Start) Divisors of 462 = 2*3*7*11 (p=2, q=3, r=7, s=11) are 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462, thus the factorization patterns in the order of increasing divisors are: 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs. Divisors of 546 = 2*3*7*13 (p=2, q=3, r=7, s=13) are 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546, thus the factorization patterns are 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs, that is, identical with those of 462, thus a(546) = a(462). Divisors of 858 = 2*3*11*13 (p=2, q=3, r=11, s=13) are 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858, thus the factorization patterns are 1, p, q, pq, r, s, pr, ps, qr, qs, pqr, pqs, rs, prs, qrs and pqrs. At the 8th divisor (26), we see that pattern ps is different from pattern qr of the 8th divisor of 546 (21), thus a(858) is not equal to a(546). (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
FactorizationPattern[n_] := Module[ {pn, fd, f1, f2, d}, pn = First /@ FactorInteger[n]; fd = FactorInteger[ReplacePart[Divisors[n], 1 -> {}]]; f1 = (ReplacePart[#, 1 -> FromCharacterCode[ 111 + First[Position[pn, First[#]]]]]) &; f2 = (f1 /@ #) &; fd = f2 /@ fd; f1 = (Power[First[#], Last[#]]) &; For[i = 1, i <= Length[fd], i++, d = fd[[i]]; For[j = 1, j <= Length[d], j++,d[[j]] = f1[d[[j]]];]; d = Product[x, {x, d}]; fd[[i]] = d; ]; fd ] ListFactorizationPatternIndices[n_] := Module[ {mem, k, i, p, a}, mem = Association[]; a = {}; k = 0; For[i = 1, i \[LessSlantEqual] n, i++, p = FactorizationPattern[i]; If[KeyExistsQ[mem, p],, k++; mem = Append[mem, p -> k] ]; a = Append[a, mem[p]] ]; a ] ListFactorizationPatternIndices[80] (* or *) f[n_] := If[n==1, 1, Block[{p = First /@ FactorInteger@n, z,x}, z= Table[p[[i]] -> x[i], {i, Length@p}]; Times @@ (((#[[1]] /. z)^#[[2]]) & /@ FactorInteger@ #) & /@ Divisors[n]]]; A = <||>; Table[k = f[n]; If[ KeyExistsQ[A, k], A[k], t = 1 + Length@A; A[k] = t], {n, 80}] (* Giovanni Resta, Jul 20 2017 *)
Formula
A191743(n) = MIN(k such that a(k)=n).
a(p) = 2, for p prime;
a(p^2) = 3, for p prime;
a(p*q) = 4, for p, q distinct primes.
Extensions
More terms from Michael De Vlieger and Antti Karttunen, Mar 07 2018
Comments