A290169 a(n) = least k such that both the sum of the smallest n divisors of k and the sum of its greatest n divisors are prime numbers.
2, 4, 30, 16, 140, 64, 264, 144, 336, 525, 144, 800, 1200, 576, 1600, 2016, 1440, 1296, 2160, 2304, 7980, 6440, 3360, 8360, 4080, 3960, 2772, 16100, 9108, 10608, 7392, 12320, 14688, 37240, 21780, 18200, 45760, 20160, 9240, 24624, 14364, 8400, 22176, 23760
Offset: 2
Keywords
Examples
a(4)=30 because both the sum of the first 4 divisors of 30 (1 + 2 + 3 + 5 = 11) and the sum of its last 4 divisors (30 + 15 + 10 + 6 = 61) are prime numbers.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
Table[k=1;While[Nand[Length@#>=n,PrimeQ[Total@Take[PadRight[#,n],n]]]||Nand[Length@#>=n,PrimeQ[Total@Take[PadLeft[#,n],n]]]&@Divisors@k,k++];k,{n,2,10}]
Comments