cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290140 The number of maximal subsemigroups of the Jones monoid on the set [1..n].

Original entry on oeis.org

1, 2, 5, 9, 13, 19, 27, 39, 57, 85, 129, 199, 311, 491, 781, 1249, 2005, 3227, 5203, 8399, 13569, 21933, 35465, 57359, 92783, 150099, 242837, 392889, 635677, 1028515, 1664139, 2692599, 4356681, 7049221, 11405841, 18454999, 29860775, 48315707, 78176413
Offset: 1

Views

Author

James Mitchell and Wilf A. Wilson, Jul 21 2017

Keywords

Comments

a(2n) is the number of maximal subsemigroups of the planar partition monoid of degree n.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    {1, 2}~Join~Table[2 Fibonacci[n - 1] + 2 n - 3, {n, 3, 39}] (* Michael De Vlieger, Jul 21 2017 *)
  • PARI
    Vec(x*(1 + x)*(1 - 2*x + 3*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 21 2017

Formula

a(n) = 2 * A000045(n - 1) + 2n - 3, n > 2.
From Colin Barker, Jul 21 2017: (Start)
G.f.: x*(1 + x)*(1 - 2*x + 3*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - x - x^2)).
a(n) = -5 + (2^(-n)*((1-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(1+sqrt(5))^n)) / sqrt(5) + 2*(1+n) for n>2.
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>6.
(End)