A290166 Number of complete non-collateral matches with lattice points on the edges of an n X n square.
1, 13, 684, 73980, 13376448, 3627115200, 1376014521600, 695592156268800, 451867517982720000, 366777996951376281600, 363753784968105369600000, 432795572570448228556800000, 608442975450529801872998400000, 997771862620790990336507904000000
Offset: 1
Keywords
Examples
Points on the sides of a 2 X 2 square can be matched in 13 different ways, if matching two points on the same side is not allowed. Therefore a(2)=13.
Links
- César Eliud Lozada, Complete matches
Programs
-
PARI
\\ s is without corners and left:m-a, right:m-b, top:m-c, bottom:m-d. s(m,a,b,c,d) = {sum(k=0, m, my(j = k+(a+b-c-d)/2); if(j<0||k<0||2*(m-k)Andrew Howroyd, Sep 05 2017
Extensions
a(5)-a(14) from Andrew Howroyd, Sep 05 2017
Comments