A290225 Number of solid standard Young tableaux of cylindrical shape lambda X n, where lambda ranges over all partitions of n.
1, 1, 4, 276, 1161678, 620383261034, 80434777704834144228, 3212151962391797592956111856142, 58141033434729590882944205957642581926272684, 738506234630963222745737660670442498620046849638365979249010
Offset: 0
Keywords
Links
- S. B. Ekhad and D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229 [math.CO], 2012.
- Wikipedia, Young tableau
Crossrefs
Main diagonal of A215204.
Programs
-
Maple
b:= proc(l) option remember; local m; m:= nops(l); `if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]> `if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop( j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m)) end: g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])), add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i)) end: a:= n-> g(n$3, []): seq(a(n), n=0..6); -
Mathematica
b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]]; g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}] & /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]]; a[n_] := g[n, n, n, {}]; Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Dec 28 2022, after Alois P. Heinz in A215204 *)
Formula
a(n) = A215204(n,n).