A290252 Number of standard tableaux of the integer partition having viabin number n.
1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 5, 5, 5, 1, 1, 4, 9, 6, 14, 16, 21, 4, 14, 21, 42, 9, 42, 14, 14, 1, 1, 5, 14, 10, 28, 35, 56, 10, 42, 70, 168, 35, 210, 70, 84, 5, 42, 84, 252, 56, 462, 168, 252, 14, 462, 210, 462, 28, 462, 42, 42, 1, 1, 6, 20, 15, 48, 64, 120, 20, 90, 162, 450, 90, 660, 216, 300, 15, 132, 288, 990, 216, 2112
Offset: 0
Examples
a(9) = 3; indeed, the partition with viabin number 9 is [2,1,1], the hooklength of the corresponding Ferrers board are 4,1,2,1 and, consequently, the number of standard tableaux is 4!/(4*2) = 3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..16384
Crossrefs
Cf. A290251.
Programs
-
Maple
vitopart := proc (n) local L, i, j, N, p, t; N := 2*n; L := ListTools:-Reverse(convert(N, base, 2)); j := 0; for i to nops(L) do if L[i] = 0 then j := j+1; p[j] := numboccur(L[1 .. i], 1) end if end do; sort([seq(p[t], t = 1 .. j)], `>=`) end proc: H := proc (pa) local F, j, p, Q, i, col, a, A; F := proc (x) local i, ct: ct := 0: for i to nops(x) do if 1 < x[i] then ct := ct+1 else end if end do: ct end proc: for j to nops(pa) do p[1][j] := pa[j] end do: Q[1] := [seq(p[1][j], j = 1 .. nops(pa))]: for i from 2 to pa[1] do for j to F(Q[i-1]) do p[i][j] := Q[i-1][j]-1 end do: Q[i] := [seq(p[i][j], j = 1 .. F(Q[i-1]))] end do: for i to pa[1] do col[i] := [seq(Q[i][j]+nops(Q[i])-j, j = 1 .. nops(Q[i]))] end do: a := proc (i, j) if i <= nops(Q[j]) and j <= pa[1] then Q[j][i]+nops(Q[j])-i else 1 end if end proc: A := matrix(nops(pa), pa[1], a): product(product(A[m, n], n = 1 .. pa[1]), m = 1 .. nops(pa)) end proc: ST := proc (m) options operator, arrow: factorial(add(u, `in`(u, vitopart(m))))/H(vitopart(m)) end proc: seq(ST(q), q = 0 .. 120); # second Maple program: a:= proc(n) local l, m; m:= n; [0]; while m>0 do `if`(1= irem(m, 2, 'm'), map(x-> x+1, %), [%[], 0]) od: l:=%: (h-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>l[k] , 0, 1), k=i+1..h), j=1..l[i]), i=1..h))(nops(l)) end: seq(a(n), n=0..120); # Alois P. Heinz, Aug 22 2017
Comments