A290253 Triangle read by rows. Row n consists of the parts, ordered nonincreasingly, of the integer partition having viabin number n.
0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 3, 2, 3, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 1, 3, 2, 1, 3, 3, 1, 4, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 3, 3, 4, 3, 4, 4, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 1, 1, 3, 3, 1, 1, 4, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 3, 2, 1, 4, 2, 1, 3, 3, 3, 1, 4, 3, 1, 4, 4, 1, 5, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2
Offset: 0
Examples
Row 25 is 3,2,2. Indeed, the binary form of 25 is 11001. Consequently, the southeast border of the Ferrers board of the associated partition is EENNEN, where E and N are the steps [1,0] and [0,1], respectively. This leads to the partition [3,2,2]. Triangle begins: 0, 1; 1,1; 2; 1,1,1; 2,1; 2,2; 3;
Links
- Alois P. Heinz, Rows n = 0..4095, flattened
Programs
-
Maple
# (due to W. Edwin Clark) vitopart := proc (n) local L, i, j, N, p, t; N := 2*n; L := ListTools:-Reverse(convert(N, base, 2)); j := 0; for i to nops(L) do if L[i] = 0 then j := j+1; p[j] := numboccur(L[1 .. i], 1) end if end do; sort([seq(p[t], t = 1 .. j)], `>=`) end proc: # second Maple program: T:= proc(n) local m; m:= n; [0]; while m>0 do `if`(1= irem(m, 2, 'm'), map(x-> x+1, %), [%[], 0]) od: %[] end: seq(T(n), n=0..50); # Alois P. Heinz, Aug 23 2017
-
Mathematica
T[n_] := Module[{L = IntegerDigits[2n, 2], j = 0, p}, Do[If[L[[i]] == 0, j++; p[j] = Count[L[[;;i]], 1]], {i, 1, Length[L]}]; Array[p, j] // Reverse]; Table[T[n], {n, 0, 50}] // Flatten (* Jean-François Alcover, Aug 06 2024, after W. Edwin Clark *)
Comments