A290254 The viabin numbers of the self-conjugate integer partitions.
0, 1, 5, 6, 19, 21, 26, 28, 71, 75, 85, 89, 102, 106, 116, 120, 271, 279, 299, 307, 333, 341, 361, 369, 398, 406, 426, 434, 460, 468, 488, 496, 1055, 1071, 1111, 1127, 1179, 1195, 1235, 1251, 1309, 1325, 1365, 1381, 1433, 1449, 1489, 1505, 1566, 1582, 1622
Offset: 1
Keywords
Examples
19 is in the sequence. Indeed, binary (19) = 10011 and so the southeast border of the Ferrers board of the corresponding integer partition is ENNEEN, where E = (1,0) and N = (0,1). This leads to the self-conjugate integer partition [3,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..16384
Programs
-
Maple
a := proc (n) local i, m, r: m, r := n, 0: for i from 0 while 1 < m do r := 2*r+1-irem(m, 2, 'm') end do: r+2^i end proc: SC := {0}: for n to 3000 do if a(n) = n then SC := `union`(SC, {n}) else end if end do: SC; # first part of the program taken from A059894.
-
Mathematica
nmax = 3000; (* nmax=3000 gives 64 terms *) a[n_] := Module[{i, m = n, r = 0}, For[i = 0, 1 < m, i++, r = 2*r + 1 - Mod[m, 2]; m = Quotient[m, 2]]; r + 2^i]; SC = {0}; For[n = 1, n <= nmax, n++, If[a[n] == n, SC = Union[SC, {n}]]]; SC (* Jean-François Alcover, Dec 16 2020, after Maple *)
-
PARI
a(n) = my(v=binary(max(1,n-1))[^1]); n<<#v + bitneg(fromdigits(Vecrev(v),2)); \\ Kevin Ryde, Nov 30 2021
-
Python
a = lambda n: int(bin(n-1)[2:] + ''.join(str(1 ^ int(ch)) for ch in bin(n-1)[-1:2:-1]), 2) # Peter J. Taylor, Sep 24 2021
Formula
{ 0 } union fixed points of A059894. - Alois P. Heinz, Aug 24 2017
a(n) = a(n-1) + 2*4^(f(n-1) - 1) + 3*2^(f(n-1) - 1) - 1 if n = 2^k + 1, k > 0, otherwise a(n-1) + (2^(A007814(n-1) + 2) - 3)*2^f(A025480(n-2)) with a(1) = 0, a(2) = 1 where f(n) = A000523(n) for n > 0 with f(0) = 0. - Mikhail Kurkov, Sep 24 2021 [verification needed]
Comments