cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290255 Number of 0's following directly the first 1 in the binary representation of n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 0, 3, 2, 1, 1, 0, 0, 0, 0, 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Emeric Deutsch, Sep 03 2017

Keywords

Examples

			a(19) = 2 because 19_2 = 10'0'11; a(21) = 1 because 21_2 = 10'101_2 (the counted 0's are marked).
		

Programs

  • Maple
    a := proc (n) if type(log[2](n), integer) = true then log[2](n) else a(floor((1/2)*n)) end if end proc: seq(a(n), n = 1 .. 200);
    # Alternate:
    f := proc(n) option remember; local v;
    v:= padic:-ordp(n,2);
      if n = 2^v then v else procname((n-2^v)/2^(v+1)) fi
    end proc:
    map(f, [$1..1000]); # Robert Israel, Sep 03 2017
  • Mathematica
    sfo[n_]:=Module[{sidn2=Split[IntegerDigits[n,2]]},If[Length[ sidn2[[1]]]> 1, 0, Length[ sidn2[[2]]]]]; Join[{0},Array[sfo,110,2]] (* Harvey P. Dale, Mar 04 2018 *)

Formula

a(2^k)= k (k>=0); otherwise, a(n) = a(floor(n/2)).
G.f. q(x) + Sum_{j>=1} q(x^(2^j))*(x^(2^j)-x^(2^(j-1)))/(x-1) where q(z) = Sum_{j>=1} j*x^(2^j). - Robert Israel, Sep 03 2017