A290264 Initial primes of 9 consecutive primes with 8 consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2.
32465047, 37091581, 146742847, 239659891, 245333251, 272213797, 1060690651, 1541736811, 2002738207, 2480351677, 2636566351, 4421955007, 6168859201, 8158683037, 10367633527, 10623394321, 11452116817, 11691059641, 11892876841, 13551877831, 15043908637
Offset: 1
Keywords
Examples
32465047 is a member of this sequence because the 9 consecutive primes 32465047, 32465063, 32465077, 32465089, 32465099, 32465107, 32465113, 32465117, 32465119 have consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2. That is, 32465047 + 16 = 32465063, 32465063 + 14 = 32465077, 32465077 + 12 = 32465089, 32465089 + 10 = 32465099, 32465099 + 8 = 32465107, 32465107 + 6 = 32465113, 32465113 + 4 = 32465117, 32465117 + 2 = 32465119.
Programs
-
GAP
P:=Filtered([1..50000000],IsPrime);;I:=Reversed([2,4,6,8,10,12,14,16]);; P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Collected(last);; P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5],P1[i+6],P1[i+7]]);; P3:=List(Positions(P2,I),i->P[i]); Length(P3);
Extensions
a(6)-a(21) from Giovanni Resta, Jul 25 2017
Comments