A290273 Number of minimal dominating sets in the n-pan graph.
2, 2, 3, 5, 7, 8, 13, 18, 25, 34, 49, 69, 95, 134, 188, 264, 368, 517, 725, 1015, 1422, 1993, 2794, 3913, 5484, 7685, 10769, 15089, 21144, 29630, 41518, 58178, 81523, 114237, 160075, 224308, 314317, 440442, 617177, 864830, 1211861, 1698141, 2379551, 3334390, 4672376
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Eric Weisstein's World of Mathematics, Pan Graph
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, -1).
Programs
-
Mathematica
Table[-RootSum[1 - #^2 - #^3 - #^4 + #^6 &, -9 #^n + 33 #^(n + 1) - 23 #^(n + 2) - 45 #^(n + 3) - 38 #^(n + 4) + #^(n + 5) &]/229, {n, 20}] LinearRecurrence[{0, 1, 1, 1, 0, -1}, {2, 2, 3, 5, 7, 8}, 50] CoefficientList[Series[(2 + 2 x + x^2 + x^3 - 2 x^5)/(1 - x^2 - x^3 - x^4 + x^6), {x, 0, 20}], x]
Formula
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6).
G.f.: x*(2 + 2*x + x^2 + x^3 - 2*x^5)/(1 - x^2 - x^3 - x^4 + x^6).
Comments