A290276 Numbers that are the sum of distinct odd positive cubes.
1, 27, 28, 125, 126, 152, 153, 343, 344, 370, 371, 468, 469, 495, 496, 729, 730, 756, 757, 854, 855, 881, 882, 1072, 1073, 1099, 1100, 1197, 1198, 1224, 1225, 1331, 1332, 1358, 1359, 1456, 1457, 1483, 1484, 1674, 1675, 1701, 1702, 1799, 1800, 1826, 1827, 2060, 2061, 2087, 2088, 2185, 2186, 2197, 2198, 2212
Offset: 1
Keywords
Examples
881 is in the sequence because 881 = 27 + 125 + 729 = 3^3 + 5^3 + 9^3.
Links
Programs
-
Maple
N:= 10000: # to get all terms <= N M:= floor(N^(1/3)): G:= mul(1+x^(j^3),j=1..M,2): S:= series(G,x,N+1): select(t -> coeff(S,x,t)>0, [$1..N]); # Robert Israel, Jul 26 2017
-
Mathematica
max = 2212; f[x_] := Product[1 + x^(2 k + 1)^3, {k, 0, 8}]; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, max}]] // Rest
Comments