A290286 Determinant of circulant matrix of order 4 with entries in the first row (-1)^j*Sum_{k>=0}(-1)^k*binomial(n, 4*k+j), j=0,1,2,3.
1, 0, 0, 0, -1008, -37120, -473600, 0, 63996160, 702013440, 2893578240, 0, -393379835904, -12971004067840, -160377313820672, 0, 21792325059543040, 239501351489372160, 987061897553510400, 0, -134124249770961666048, -4422152303189489090560
Offset: 0
Keywords
Links
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Wikipedia, Circulant matrix
Programs
-
Maple
seq(LinearAlgebra:-Determinant(Matrix(4,shape=Circulant[seq((-1)^j* add((-1)^k*binomial(n, 4*k+j),k=0..n/4),j=0..3)])),n=0..50); # Robert Israel, Jul 26 2017
-
Mathematica
ro[n_] := Table[Sum[(-1)^(j+k) Binomial[n, 4k+j], {k, 0, n/4}], {j, 0, 3}]; M[n_] := Table[RotateRight[ro[n], m], {m, 0, 3}]; a[n_] := Det[M[n]]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
-
Python
from sympy.matrices import Matrix from sympy import binomial def mj(j, n): return (-1)**j*sum((-1)**k*binomial(n, 4*k + j) for k in range(n//4 + 1)) def a(n): m=Matrix(4, 4, lambda i,j: mj((i-j)%4,n)) return m.det() print([a(n) for n in range(22)]) # Indranil Ghosh, Jul 31 2017
Formula
a(n) = 0 for n == 3 (mod 4).
G.f. (empirical): (1/8)*(68*x^2+1)/(16*x^4+136*x^2+1)+(1/4)*(68*x^2-8*x+1)/(16*x^4+64*x^3+128*x^2-16*x+1)+(1/2)*(12*x^2+1)/(16*x^4+24*x^2+1)+3/(8*(4*x^2+1))-(1/4)*(12*x^2-4*x+1)/(16*x^4-32*x^3+32*x^2-8*x+1)-(1/4)*(4*x^2+1)/(16*x^4+1)+(1/4)*(12*x^2+4*x+1)/(16*x^4+32*x^3+32*x^2+8*x+1). - Robert Israel, Jul 26 2017
Comments