A290312 Third diagonal sequence of the Sheffer triangle A094816 (special Charlier).
1, 8, 29, 75, 160, 301, 518, 834, 1275, 1870, 2651, 3653, 4914, 6475, 8380, 10676, 13413, 16644, 20425, 24815, 29876, 35673, 42274, 49750, 58175, 67626, 78183, 89929, 102950, 117335, 133176, 150568, 169609, 190400, 213045, 237651, 264328, 293189, 324350, 357930
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
PARI
Vec((1 + 3*x - x^2)/(1 - x)^5 + O(x^60)) \\ Colin Barker, Jul 29 2017
Formula
G.f.: (1 + 3*x - x^2)/(1 - x)^5.
E.g.f.: exp(x)*(1 + 7*x + 14*x^2/2! + 11*x^3/3! + 3*x^4/4!). This is computed from the o.g.f. with eqs. (23)-(25) of the Wolfdieter Lang 2017 link in A282629.
From Colin Barker, Jul 29 2017: (Start)
a(n) = (24 + 70*n + 69*n^2 + 26*n^3 + 3*n^4) / 24.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
(End)
Comments