A290315 Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A154537 (S2[2,1] generalized Stirling2), for n >= 0.
1, 1, 2, 1, 16, 12, 1, 66, 284, 120, 1, 224, 2872, 5952, 1680, 1, 706, 21080, 116336, 146064, 30240, 1, 2160, 132228, 1531072, 4804656, 4130304, 665280, 1, 6530, 760500, 16271080, 101422640, 208791648, 132557760, 17297280, 1, 19648, 4155120, 151922560, 1661273440, 6556459008, 9657333504, 4766423040, 518918400, 1, 59010, 21993776, 1304454880, 23155279200, 155184721088, 427142449920, 477104352768, 189945688320, 17643225600
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: 1 2 2: 1 16 12 3: 1 66 284 120 4: 1 224 2872 5952 1680 5: 1 706 21080 116336 146064 30240 6: 1 2160 132228 1531072 4804656 4130304 665280 7: 1 6530 760500 16271080 101422640 208791648 132557760 17297280 ... n = 8: 1 19648 4155120 151922560 1661273440 6556459008 9657333504 4766423040 518918400, n = 9: 1 59010 21993776 1304454880 23155279200 155184721088 427142449920 477104352768 189945688320 17643225600. ... n=3: The o.g.f. of the 4th diagonal sequence of A154537, [1, 80, 1320, ...], is P(3, x) = (1 + 66*x + 284*x^2 + 120*x^3)/(1 - 2*x)^7.
Links
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], 2017.
Formula
T(n, k) = [x^k] P(n, x) with the numerator polynomial in the o.g.f. of the (n+1)-th diagonal sequence of the triangle A154537. See a comment above.
Comments