cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290327 Total number of parts in all partitions of n into distinct Lucas numbers (beginning with 1) (A000204).

Original entry on oeis.org

1, 0, 1, 3, 2, 0, 3, 5, 0, 2, 6, 5, 0, 5, 9, 3, 0, 6, 9, 0, 5, 12, 7, 0, 9, 12, 0, 3, 10, 9, 0, 9, 17, 7, 0, 12, 16, 0, 7, 18, 12, 0, 12, 18, 4, 0, 10, 14, 0, 9, 21, 12, 0, 17, 22, 0, 7, 21, 16, 0, 16, 27, 9, 0, 18, 23, 0, 12, 27, 15, 0, 18, 22, 0, 4, 15, 14, 0, 14, 27, 12, 0, 21, 27, 0, 12, 32, 22, 0, 22
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 27 2017

Keywords

Examples

			a(8) = 5 because we have [7, 1], [4, 3, 1] and 2 + 3 = 5.
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; Rest[CoefficientList[Series[Sum[x^LucasL[i]/(1 + x^LucasL[i]) Product[(1 + x^LucasL[j]), {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} x^A000204(i)/(1 + x^A000204(i))*Product_{j>=1} (1 + x^A000204(j)).