A290338 Euler elliptic Carmichael numbers for the elliptic curve y^2 = x^3 + 80.
481, 1679, 1763, 3599, 4991, 5183, 6119, 7859, 9271, 9407, 9599, 18239, 24119, 24511, 24803, 31919, 38111, 38999, 46079, 56159, 57599, 58463, 62863, 63503, 67199, 72899, 82679, 152279, 163799, 167579, 170519, 181859, 187739, 196559, 208919, 213443, 236851
Offset: 1
Keywords
Examples
Let N = 481 = 13*37. The discriminant of E: y^2 = x^3 + 80 is -16*(4*0^3 + 27*80^2) = -2764800, which is coprime to N. It turns out that E(Z/13Z) is isomorphic to the Abelian group Z/19Z and that E(Z/37Z) is isomorphic to the Abelian group Z/14Z + Z/2Z. In particular, #E(Z/13Z) = 19 and #E(Z/37Z) = 28, so a_13 = 13+1-19 = -5 and a_37 = 37+1-28 = 10. Therefore, a_N = a_13 * a_37 = -50, so N+1-a_N = 532. Moreover, e_{N,13} = 19 and e_{N,37} = 14, so 2*e_{N,13} = 38 and 2*e_{N,37} = 28 both divide N+1-a_N.
Links
- Hyun Jong Kim, Table of n, a(n) for n = 1..334
- L. Babinkostova, J. C. Bahr, Y. H. Kim, E. Neyman, and G. K. Taylor, Anomalous primes and the Elliptic Korselt Criterion, arXiv:1608.02317 [math.NT], 2016.
- L. Babinkostova, B. Bentz, M. I. Hassan, A. Hernández-Espiet, and H. Kim, Anomalous Primes and Extension of the Korselt Criterion.
- L. Babinkostova, B. Bentz, M. I. Hassan, A. Hernández-Espiet, and H. Kim, Software for generating sequence.
- D. M. Gordon, On the number of elliptic pseudoprimes, Mathematics of Computations Vol. 52:185 (1989), 231-245.
- B. Mazur, Rational Points of Abelian Varieties with Values in Towers of Number Fields, Invent. Mathematics 18 (1972), 183-266.
- I. Miyamoto and M. R. Murty, Elliptic Pseudoprimes, Mathematics of Computation, Vol. 53:187 (1989), 290-305.
- S. Müller, On the existence and non-existence of elliptic pseudoprimes, Mathematics of Computation, Vol. 79 (2009), 1171-1190.
- H. Qin, Anomalous primes of the elliptic curve E_D:y^2 = x^3 + D, Proceedings of London Mathematics Society, Vol. 3:112 (2016), 415-453.
- J. H. Silverman, Elliptic Carmichael Numbers and Elliptic Korselt Criteria, Acta Arithmetica Vol. 155:3 (2012), 233-246.
Comments