A290339 Strong elliptic Carmichael numbers for the elliptic curve y^2 = x^3 + 80.
7783, 327781, 416521, 991681, 3401341, 4584187, 5234089, 5325883, 6966181, 8681581, 8787631, 10582501, 11947501, 16586089, 18143221, 18253777, 19687531, 22963471, 28478701, 55912891
Offset: 1
Keywords
Examples
Let N = 7783 = 43*181. The discriminant of E: y^2 = x^3 + 80 is -16*(4*0^3 + 27*80^2) = -2764800, which is coprime to N. It turns out that E(Z/43Z) is isomorphic to the Abelian group Z/7Z + Z/7Z and that E(Z/181Z) is isomorphic to the Abelian group Z/63Z + Z/3Z. In particular, #E(Z/43Z) = 49 and #E(Z/181Z) = 189, so a_43 = 43+1-49 = -5 and a_181 = 181+1-189 = -7. Therefore, a_N = a_43 * a_181 = 35, so N+1-a_N = 7749. Moreover, e_{N,43} = 7 and e_{N,181} = 63, both of which divide N+1-a_N.
Links
- L. Babinkostova, J. C. Bahr, Y. H. Kim, E. Neyman, and G. K. Taylor, Anomalous primes and the Elliptic Korselt Criterion, arXiv:1608.02317 [math.NT], 2016.
- L. Babinkostova, B. Bentz, M. I. Hassan, A. Hernández-Espiet and H. Kim, Anomalous Primes and Extension of the Korselt Criterion.
- L. Babinkostova, B. Bentz, M. I. Hassan, A. Hernández-Espiet and H. Kim, Software for generating sequence.
- D. M. Gordon, On the number of elliptic pseudoprimes, Mathematics of Computations Vol. 52:185 (1989), 231-245.
- B. Mazur, Rational Points of Abelian Varieties with Values in Towers of Number Fields, Invent. Mathematics 18 (1972), 183-266.
- I. Miyamoto and M. R. Murty, Elliptic Pseudoprimes, Mathematics of Computation, Vol. 53:187 (1989), 290-305.
- S. Müller, On the existence and non-existence of elliptic pseudoprimes, Mathematics of Computation, Vol. 79 (2009), 1171-1190.
- H. Qin, Anomalous primes of the elliptic curve E_D:y^2 = x^3 + D, Proceedings of London Mathematics Society, Vol. 3:112 (2016), 415-453.
- J. H. Silverman, Elliptic Carmichael Numbers and Elliptic Korselt Criteria, Acta Arithmetica Vol. 155:3 (2012), 233-246.
Comments