A290351 Euler transform of the Bell numbers (A000110).
1, 1, 3, 8, 26, 88, 340, 1411, 6417, 31474, 166242, 939646, 5659613, 36158227, 244049562, 1733702757, 12919475840, 100690425442, 818554392962, 6924577964036, 60828588178031, 553821749290234, 5217264062756556, 50776256646839085, 509823607380230570
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( b(n-j)*binomial(n-1, j-1), j=1..n)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d* b(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30);
-
Mathematica
b[n_]:=b[n]=If[n==0, 1, Sum[b[n - j] Binomial[n - 1, j - 1], {j, n}]]; a[n_]:=a[n]=If[n==0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}] a[n - j], {j, n}]/n]; Table[a[n], {n, 0, 50}] (* Indranil Ghosh, Jul 28 2017, after Maple code *)