cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290355 The sixth Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 6, 21, 91, 336, 1337, 5026, 19193, 71769, 268272, 992676, 3659116, 13400426, 48863017, 177299790, 640713627, 2305930966, 8268556438, 29544196129, 105215495691, 373523546056, 1322096328899, 4666327388034, 16425341129078, 57667752483279, 201967215942032
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

Also the number of 6-level rooted trees with n leaves. All n leaves are in level 6. a(2) = 6:
: o o o o o o
: | | | | | ( )
: o o o o o o o
: | | | | ( ) | |
: o o o o o o o o
: | | | ( ) | | | |
: o o o o o o o o o
: | | ( ) | | | | | |
: o o o o o o o o o o
: | ( ) | | | | | | | |
: o o o o o o o o o o o
: ( ) | | | | | | | | | |
: o o o o o o o o o o o o

Crossrefs

Column k=6 of A290353.
Cf. A007714.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, 6], {n, 0, 30}] (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^A007714(j).