A290392 Number of 6-cycles in the n-triangular honeycomb obtuse knight graph.
0, 0, 0, 0, 4, 13, 98, 415, 1151, 2471, 4385, 6893, 9995, 13691, 17981, 22865, 28343, 34415, 41081, 48341, 56195, 64643, 73685, 83321, 93551, 104375, 115793, 127805, 140411, 153611, 167405, 181793, 196775, 212351, 228521, 245285, 262643, 280595
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
Crossrefs
Programs
-
Mathematica
Table[Piecewise[{{0, n <= 4}, {4, n == 5}, {13, n == 6}, {98, n == 7}, {415, n == 8}, {16001 - 4323 n + 297 n^2, n > 8}}, 0], {n, 20}] Join[{0, 0, 0, 0, 4, 13, 98, 415}, LinearRecurrence[{3, -3, 1}, {1151, 2471, 4385}, 12]] CoefficientList[Series[(x^4 (-4 - x - 71 x^2 - 156 x^3 - 187 x^4 - 165 x^5 - 10 x^6))/(-1 + x)^3, {x, 0, 20}], x]
Formula
For n >= 9, a(n) = 16001 - 4323*n + 297*n^2.
For n >= 12, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: x^5*(-4 - x - 71*x^2 - 156*x^3 - 187*x^4 - 165*x^5 - 10*x^6)/(-1 +
x)^3.