A290405 Expansion of (a(q) / b(q))^3 in powers of q where a(), b() are cubic AGM theta functions.
1, 27, 324, 2430, 13716, 64557, 265356, 983556, 3353076, 10670373, 32031288, 91455804, 249948828, 657261999, 1669898592, 4113612864, 9853898292, 23010586596, 52494114852, 117209543940, 256559365656, 551320914321, 1164556135440, 2420715030912, 4956677613180
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- J. M. Borwein, P. B. Borwein and F. Garvan, Some Cubic Modular Identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35-47.
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[1 + 27*x*Product[(1 + x^k + x^(2*k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 30 2017 *)
Formula
a(n) = 27 * A121590(n) for n > 0.
G.f.: (1 + 9*(eta(q^9)/eta(q))^3)^3 = 1 + 27*(eta(q^3)/eta(q))^12 = 1 + (c(q) / b(q))^3.
Comments