cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290405 Expansion of (a(q) / b(q))^3 in powers of q where a(), b() are cubic AGM theta functions.

Original entry on oeis.org

1, 27, 324, 2430, 13716, 64557, 265356, 983556, 3353076, 10670373, 32031288, 91455804, 249948828, 657261999, 1669898592, 4113612864, 9853898292, 23010586596, 52494114852, 117209543940, 256559365656, 551320914321, 1164556135440, 2420715030912, 4956677613180
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2017

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1 + 27*x*Product[(1 + x^k + x^(2*k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 30 2017 *)

Formula

a(n) = 27 * A121590(n) for n > 0.
G.f.: (1 + 9*(eta(q^9)/eta(q))^3)^3 = 1 + 27*(eta(q^3)/eta(q))^12 = 1 + (c(q) / b(q))^3.