A290429 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 0, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 0, 1, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 3, 2, 0, 0, 1, 12, 55, 120, 135, 112, 112, 60, 15, 12, 3, 2, 0, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 0, 1, 3, 6, 10, ... 0, 0, 0, 1, 4, 10, ... 0, 1, 2, 3, 5, 10, ... 0, 0, 2, 6, 12, 21, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
- Eric Weisstein's World of Mathematics, Tetrahedral Number
- Index to sequences related to pyramidal numbers
Crossrefs
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (i + 2)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
Formula
G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.
Comments