A290447 Consider n equally spaced points along a line and join every pair of points by a semicircle above the line; a(n) is the number of intersection points.
0, 0, 0, 1, 5, 15, 35, 70, 124, 200, 300, 445, 627, 875, 1189, 1564, 2006, 2568, 3225, 4035, 4972, 6030, 7250, 8701, 10323, 12156, 14235, 16554, 19124, 22072, 25250, 28863, 32827, 37166, 41949, 47142, 52653, 58794, 65503, 72741, 80437
Offset: 1
Keywords
References
- Torsten Sillke, email to N. J. A. Sloane, Jul 27 2017 (giving values for a(1)-a(13)).
Links
- David Applegate, Table of n, a(n) for n = 1..500
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
- M. F. Hasler, Illustration for a(9) = 124. (First instance where a triple intersection occurs, whence a(9) < binomial(9,4).)
- M. F. Hasler, Illustration for a(9) = 124 [Another version, showing baseline]
- M. F. Hasler, Interactive web page for drawing the illustration for a(n).
- Torsten Sillke, Illustration for a(13) = 627
- N. J. A. Sloane, Illustration for a(5) = 5.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
- Zahlenjagd, Winter 2010 Problem (asks for a(10)).
Crossrefs
Programs
-
PARI
A290447(n,U=[])={for(A=1,n-3,for(C=A+1,n-2,for(B=C+1,n-1,for(D=B+1,n,U=setunion(U,[[(C*D-A*B)/(C+D-A-B),(C-A)*(D-A)*(C-B)*(D-B)/(C+D-A-B)^2]])))));#U} \\ M. F. Hasler, Aug 07 2017
-
Python
from itertools import combinations from fractions import Fraction def A290447(n): p,p2 = set(), set() for b,c,d in combinations(range(1,n),3): e = b + d - c f1, f2, g = Fraction(b*d,e), Fraction(b*d*(c-b)*(d-c),e**2), (n-1)*e - 2*b*d for i in range(n-d): if 2*i*e < g: p2.add((i+f1, f2)) elif 2*i*e == g: p.add(f2) else: break return len(p)+2*len(p2) # Chai Wah Wu, Aug 08 2017
Extensions
More terms from David Applegate, Aug 07 2017
Comments