cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290491 Number of ways to write 12*n+1 as x^2 + 4*y^2 + 8*z^4, where x and y are positive integers and z is a nonnegative integer.

Original entry on oeis.org

2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 4, 3, 2, 3, 5, 3, 1, 4, 3, 3, 4, 3, 2, 2, 5, 5, 1, 3, 2, 4, 3, 3, 3, 2, 6, 3, 2, 1, 3, 6, 4, 2, 2, 3, 5, 3, 3, 1, 2, 4, 3, 4, 2, 5, 4, 5, 5, 3, 2, 7, 4, 4, 3, 2, 6, 3, 4, 4, 3, 9, 3, 2, 3, 3, 6, 5, 4, 4, 3, 8, 5, 2, 2, 3, 6, 3, 3, 4, 4, 5, 7, 2, 3, 3, 8, 6, 1, 5, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 03 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4, 10, 18, 28, 39, 49, 98, 142, 163, 184, 208, 320, 382, 408, 814, 910, 1414, 2139, 2674, 3188, 3213, 4230, 6279, 25482.
(ii) All the numbers 16*n+5 (n = 0,1,2,...) can be written as x^4 + 4*y^2 + z^2, where x,y,z are integers with y > 0 and z > 0.
(iii) All the numbers 24*n+1 (n = 0,1,2,...) can be written as 12*x^4 + 4*y^2 + z^2 with x,y,z integers. Also, all the numbers 24*n+9 (n = 0,1,2,...) can be written as 2*x^4 + 6*y^2 + z^2 with x,y,z positive integers.
(iv) All the numbers 24*n+2 (n = 0,1,2,...) can be written as x^4 + 9*y^2 + z^2, where x,y,z are integers with z > 0. Also, all the numbers 24*n+17 (n = 0,1,2,...) can be written as x^4 + 16*y^2 + z^2, where x,y,z are integers with y > 0 and z > 0.
(v) All the numbers 30*n+3 (n = 1,2,3,...) can be written as 2*x^4 + 3*y^2 + z^2 with x,y,z positive integers. Also, all the numbers 30*n+21 (n = 0,1,2,...) can be written as 2*x^4 + 3*y^2 + z^2, where x,y,z are integers with z > 0.

Examples

			a(10) = 1 since 12*10+1 = 7^2 + 4*4^2 + 8*1^4.
a(28) = 1 since 12*28+1 = 9^2 + 4*8^2 + 8*0^4.
a(49) = 1 since 12*49+1 = 19^2 + 4*5^2 + 8*2^4.
a(3188) = 1 since 12*3188+1 = 103^2 + 4*80^2 + 8*4^4.
a(3213) = 1 since 12*3213+1 = 91^2 + 4*87^2 + 8*0^4.
a(4230) = 1 since 12*4230+1 = 223^2 + 4*16^2 + 8*1^4.
a(6279) = 1 since 12*6279+1 = 19^2 + 4*75^2 + 8*9^4.
a(25482) = 1 since 12*25482+1 = 531^2 + 4*58^2 + 8*6^4.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[12n+1-8x^4-4y^2],r=r+1],{x,0,((12n+1)/8)^(1/4)},{y,1,Sqrt[(12n+1-8x^4)/4]}];Print[n," ",r],{n,1,100}]