A290491 Number of ways to write 12*n+1 as x^2 + 4*y^2 + 8*z^4, where x and y are positive integers and z is a nonnegative integer.
2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 4, 3, 2, 3, 5, 3, 1, 4, 3, 3, 4, 3, 2, 2, 5, 5, 1, 3, 2, 4, 3, 3, 3, 2, 6, 3, 2, 1, 3, 6, 4, 2, 2, 3, 5, 3, 3, 1, 2, 4, 3, 4, 2, 5, 4, 5, 5, 3, 2, 7, 4, 4, 3, 2, 6, 3, 4, 4, 3, 9, 3, 2, 3, 3, 6, 5, 4, 4, 3, 8, 5, 2, 2, 3, 6, 3, 3, 4, 4, 5, 7, 2, 3, 3, 8, 6, 1, 5, 4
Offset: 1
Keywords
Examples
a(10) = 1 since 12*10+1 = 7^2 + 4*4^2 + 8*1^4. a(28) = 1 since 12*28+1 = 9^2 + 4*8^2 + 8*0^4. a(49) = 1 since 12*49+1 = 19^2 + 4*5^2 + 8*2^4. a(3188) = 1 since 12*3188+1 = 103^2 + 4*80^2 + 8*4^4. a(3213) = 1 since 12*3213+1 = 91^2 + 4*87^2 + 8*0^4. a(4230) = 1 since 12*4230+1 = 223^2 + 4*16^2 + 8*1^4. a(6279) = 1 since 12*6279+1 = 19^2 + 4*75^2 + 8*9^4. a(25482) = 1 since 12*25482+1 = 531^2 + 4*58^2 + 8*6^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), 1367-1396.
- Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), No. 2, 97-120.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Do[r=0;Do[If[SQ[12n+1-8x^4-4y^2],r=r+1],{x,0,((12n+1)/8)^(1/4)},{y,1,Sqrt[(12n+1-8x^4)/4]}];Print[n," ",r],{n,1,100}]
Comments