A290498 Numbers m such that the set of distinct prime divisors of the number of divisors of Fibonacci(m) is equal to the set of distinct prime divisors of m.
1, 4, 8, 16, 24, 32, 60, 64, 72, 96, 128, 192, 256, 300, 336, 512, 576, 648, 900, 1008, 1024, 1080, 1250
Offset: 1
Examples
72 is a term because d(Fibonacci(2^3*3^2)) = 2^9*3. 300 is a term because d(Fibonacci(2^2*3*5^2)) = 2^15*3^2*5.
Links
- Blair Kelly, Fibonacci and Lucas Factorizations
Programs
-
Mathematica
Select[Range[12]~Join~Range[14, 300, 2], Apply[SameQ, Map[FactorInteger[#][[All, 1]] &, {#, DivisorSigma[0, Fibonacci@ #]}]] &] (* Michael De Vlieger, Aug 07 2017 *)
-
PARI
is(n) = factor(numdiv(fibonacci(n)))[,1]==factor(n)[,1] \\ David A. Corneth, Aug 04 2017
Extensions
a(16)-a(19) from David A. Corneth, Aug 04 2017
a(20)-a(22) from Jon E. Schoenfield, Aug 05 2017
a(23) from Amiram Eldar, Oct 14 2019
Comments