A290518 Minimum value of Product_{i in lambda} i!, where lambda ranges over all partitions of n into distinct parts.
1, 1, 2, 2, 6, 12, 12, 48, 144, 288, 288, 1440, 5760, 17280, 34560, 34560, 207360, 1036800, 4147200, 12441600, 24883200, 24883200, 174182400, 1045094400, 5225472000, 20901888000, 62705664000, 125411328000, 125411328000, 1003290624000, 7023034368000
Offset: 0
Keywords
Examples
a(10) = 288 = (4! * 3! * 2! * 1!) is the value for partition [4,3,2,1]. All other partitions of 10 into distinct parts give larger values: [5,3,2]-> 1440, [5,4,1]-> 2880, [6,3,1]-> 4320, [6,4]-> 17280, [7,2,1]-> 10080, [7,3]-> 30240, [8,2]-> 80640, [9,1]-> 362880, [10]-> 3628800.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..960
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, infinity, `if`(n=0, 1, min(b(n, i-1), b(n-i, min(n-i, i-1))*i!))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, a(n-1)* (t-> t*(t+3)/2-n+2)(floor(sqrt(8*n-7)/2-1/2))) end: seq(a(n), n=0..30); # Alois P. Heinz, Aug 05 2017
-
Mathematica
b[n_, i_]:=b[n, i]=If[n>i*(i + 1)/2, Infinity, If[n==0, 1, Min[b[n, i - 1], b[n - i, Min[n - i, i - 1]]*i!]]]; Table[b[n, n], {n, 0, 30}] (* Indranil Ghosh, Aug 05 2017, after Maple *)