A290540 Determinant of circulant matrix of order 10 with entries in the first row that are (-1)^(j-1)*Sum_{k>=0} (-1)^k*binomial(n, 10*k+j-1), for j=1..10.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2276485387658524, -523547340003805770400, -39617190432735671861429500, -2896792542975174202888623380000, -95819032881785191861991031568287500, -1018409199709889673458815786392849200000
Offset: 0
Keywords
Links
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Wikipedia, Circulant matrix
Programs
-
Maple
f:= n -> LinearAlgebra:-Determinant(Matrix(10,10,shape= Circulant[seq((-1)^j*add((-1)^k*binomial(n,10*k+j), k=0..(n-j)/10), j=0..9)])): map(f, [$0..20]); # Robert Israel, Aug 08 2017
-
Mathematica
ro[n_] := Table[(-1)^(j-1) Sum[(-1)^k Binomial[n, 10k+j-1], {k, 0, n/10}], {j, 1, 10}]; M[n_] := Table[RotateRight[ro[n], m], {m, 0, 9}]; a[n_] := Det[M[n]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Aug 10 2018 *)
Comments