A290596 Triangle read by rows. A generalization of unsigned Lah numbers, called L[3,1].
1, 2, 1, 10, 10, 1, 80, 120, 24, 1, 880, 1760, 528, 44, 1, 12320, 30800, 12320, 1540, 70, 1, 209440, 628320, 314160, 52360, 3570, 102, 1, 4188800, 14660800, 8796480, 1832600, 166600, 7140, 140, 1, 96342400, 385369600, 269758720, 67439680, 7663600, 437920, 12880, 184, 1, 2504902400, 11272060800, 9017648640, 2630147520, 358656480, 25618320, 1004640, 21528, 234, 1, 72642169600, 363210848000, 326889763200, 108963254400, 17335063200, 1485862560, 72836400, 2081040, 33930, 290, 1
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 ... 0: 1 1: 2 1 2: 10 10 1 3: 80 120 24 1 4: 880 1760 528 44 1 5: 12320 30800 12320 1540 70 1 6: 209440 628320 314160 52360 3570 102 1 7: 4188800 14660800 8796480 1832600 166600 7140 140 1 8: 96342400 385369600 269758720 67439680 7663600 437920 12880 184 1 ... n = 9: 2504902400 11272060800 9017648640 2630147520 358656480 25618320 1004640 21528 234 1, n = 10: 72642169600 363210848000 326889763200 108963254400 17335063200 1485862560 72836400 2081040 33930 290 1. ... Recurrence from a-sequence: T(4, 2) = 2*T(3, 1) + 3*4*T(3, 2) = 2*120 + 12*24 = 528. Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2) + z(3)*T(3, 3)) = 4*(2*80 + 1*120 - (10/3)*24 + 20*1) = 880. Four term recurrence: T(4, 2) = T(3, 1) + 2*10*T(3, 2) - 3*3*8*T(2, 2) = 120 + 20*24 - 72*1 = 528. Meixner type identity for n = 2: (D_x - 3*(D_x)^2)*(10 + 10*x + x^2 ) = (10 + 2*x) - 3*2 = 2*(2 + x). Sheffer recurrence for R(3, x): [(2 + x) + 6*(1 + x)*D_x + 9*x*(D_x)^2] (10 + 10*x + x^2) = (2 + x)*(10 + 10*x + x^2) + 6*(1 + x)*(10 +2*x) + 9*2*x = 80 + 120*x + 24*x^2 + x^3 = R(3, x). Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*8/2)*(1*24/3! + 3*1/2!) = 528.
References
- Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.
Links
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, Note on a- and z-sequences of Sheffer number triangles for certain generalized Lah numbers.
Crossrefs
Formula
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 3*t)^(-2/3)*exp(x*t/(1 - 3*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 3*t)^(-2/3)*(t/(1 - 3*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 3*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), from the a-sequence {1, 3 repeat(0)} and the z-sequence given above.
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(3*n - 2)*T(n-1, m) - 3*(n-1)*(3*n - 4)*T(n-2, m), n >= m >= 0, with T(0, 0) = 1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 3*D_x)) * R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-3)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 6*(1 + x)*D_x + 3^2*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 3*m)*Sum_{p=0..n-1-m} 3^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Comments