cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008544 Triple factorial numbers: Product_{k=0..n-1} (3*k+2).

Original entry on oeis.org

1, 2, 10, 80, 880, 12320, 209440, 4188800, 96342400, 2504902400, 72642169600, 2324549427200, 81359229952000, 3091650738176000, 126757680265216000, 5577337931669504000, 262134882788466688000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n-1), n >= 1, enumerates increasing plane (aka ordered) trees with n vertices (one of them a root labeled 1) where each vertex with outdegree r >= 0 comes in r+1 types (like an (r+1)-ary vertex). See the increasing tree comments under A004747. - Wolfdieter Lang, Oct 12 2007
An example for the case of 3 vertices is shown below. For the enumeration of non-plane trees of this type see A029768. - Peter Bala, Aug 30 2011
a(n) is the product of the positive integers k <= 3*n that have k modulo 3 = 2. - Peter Luschny, Jun 23 2011
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
Partial products of A016789. - Reinhard Zumkeller, Sep 20 2013
The Mathar conjecture is true. Generally from the factorial form, the last term is the "extra" product beyond the prior term, from k=n-1 and 3k+2 evaluates to 3*(n-1)+2 = 3n-1, yielding a(n) = a(n-1)*(3n-1) (eqn1). Similarly, a(n) = a(n-2)*(3n-1)*(3(n-2)+2) = a(n-2)*(3n-1)*(3n-4) (eqn2) and a(n) = a(n-3)*(3n-1)*(3n-4)*(3*(n-2)+2) = a(n-3)*(3n-1)*(3n-4)*(3n-7) (eqn3). We equate (eqn2) and (eqn3) to get a(n-2)*(3n-1)*(3n-4) = a(n-3)*(3n-1)*(3n-4)*(3n-7) or a(n-2)+(7-3n)*a(n-3) = 0 (eqn4). From (eqn1) we have a(n)+(1-3n)*a(n-1) = 0 (eqn5). Combining (eqn4) and (eqn5) yields a(n)+(1-3n)*a(n-1)+a(n-2)+(7-3n)*a(n-3) = 0. - Bill McEachen, Jan 01 2016
a(n-1), n>=1, is the dimension of the n-th component of the operad encoding the multilinearization of the following identity in nonassociative algebras: s*(a,a,b)-(s+t)*(a,b,a)+t*(b,a,a)=0, for any given pair of scalars (s,t). Here (a,b,c) is the associator (ab)c-a(bc). This is proved in the referenced article on associator dependent algebras by Bremner and me. - Vladimir Dotsenko, Mar 22 2022

Examples

			a(2) = 10 from the described trees with 3 vertices: there are three trees with a root vertex (label 1) with outdegree r=2 (like the three 3-stars each with one different ray missing) and the four trees with a root (r=1 and label 1) a vertex with (r=1) and a leaf (r=0). Assigning labels 2 and 3 yields 2*3+4=10 such trees.
a(2) = 10. The 10 possible plane increasing trees on 3 vertices, where vertices of outdegree 1 come in 2 colors (denoted a or b) and vertices of outdegree 2 come in 3 colors (a, b or c), are:
.
   1a    1b    1a    1b        1a       1b       1c
   |     |     |     |        / \      / \      / \
   2a    2b    2b    2a      2   3    2   3    2   3
   |     |     |     |
   3     3     3     3         1a       1b       1c
                              / \      / \      / \
                             3   2    3   2    3   2
		

Crossrefs

a(n) = A004747(n+1, 1) (first column of triangle). Cf. A051141.
Cf. A225470, A290596 (first columns).
Subsequence of A007661.

Programs

  • Haskell
    a008544 n = a008544_list !! n
    a008544_list = scanl (*) 1 a016789_list
    -- Reinhard Zumkeller, Sep 20 2013
    
  • Magma
    [Round((Gamma(2*n-5/3)/Gamma(n-5/6)*Gamma(2/3)/Gamma(5/6) )/ Sqrt(3)*3^n/4^(n-1)): n in [1..20]]; // Vincenzo Librandi, Feb 21 2015
    
  • Magma
    [Round(3^n*Gamma(n+2/3)/Gamma(2/3)): n in [0..20]]; // G. C. Greubel, Mar 31 2019
  • Maple
    a := n -> mul(3*k-1, k = 1..n);
    A008544 := n -> mul(k, k = select(k-> k mod 3 = 2, [$1 .. 3*n])): seq(A008544(n), n = 0 .. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    k = 3; b[1]=2; b[n_]:= b[n] = b[n-1]+k; a[0]=1; a[1]=2; a[n_]:= a[n] = a[n-1]*b[n]; Table[a[n], {n,0,20}] (* Roger L. Bagula, Sep 17 2008 *)
    Product[3 k + 2, {k, 0, # - 1}] & /@ Range[0, 16] (* Michael De Vlieger, Jan 02 2016 *)
    Table[3^n*Pochhammer[2/3, n], {n,0,20}] (* G. C. Greubel, Mar 31 2019 *)
  • Maxima
    a(n):=((n)!*sum(binomial(k,n-k)*binomial(n+k,k)*3^(-n+k)*(-1)^(n-k),k,floor(n/2),n)); /* Vladimir Kruchinin, Sep 28 2013 */
    
  • PARI
    a(n) = prod(k=0,n-1, 3*k+2 );
    
  • PARI
    vector(20, n, n--; round(3^n*gamma(n+2/3)/gamma(2/3))) \\ G. C. Greubel, Mar 31 2019
    
  • Sage
    @CachedFunction
    def A008544(n): return 1 if n == 0 else (3*n-1)*A008544(n-1)
    [A008544(n) for n in (0..16)]  # Peter Luschny, May 20 2013
    
  • Sage
    [3^n*rising_factorial(2/3, n) for n in (0..20)] # G. C. Greubel, Mar 31 2019
    

Formula

a(n) = Product_{k=0..n-1} (3*k+2) = A007661(3*n-1) (with A007661(-1) = 1).
E.g.f.: (1-3*x)^(-2/3).
a(n) = 2*A034000(n), n >= 1, a(0) = 1.
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(1/6)*3^n*e^-n*n^n*{1 - 1/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = (Gamma(2*n-5/3)/Gamma(n-5/6)*Gamma(2/3)/Gamma(5/6))/sqrt(3)*3^n/4^(n-1). - Jeremy L. Martin, Mar 31 2002 (typo fixed by Vincenzo Librandi, Feb 21 2015)
From Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003: (Start)
a(n) = A084939(n)/A000142(n)*A000079(n).
a(n) = 3^n*Pochhammer(2/3, n) = 3^n*Gamma(n+2/3)/Gamma(2/3). (End)
Let T = A094638 and c(t) = column vector(1, t, t^2, t^3, t^4, t^5,...), then A008544 = unsigned [ T * c(-3) ] and the list partition transform A133314 of [1,T * c(-3)] gives [1,T * c(3)] with all odd terms negated, which equals a signed version of A007559; i.e., LPT[(1,signed A008544)] = signed A007559. Also LPT[A007559] = (1,-A008544) and e.g.f. [1,T * c(t)] = (1-x*t)^(-1/t) for t = 3 or -3. Analogous results hold for the double factorial, quadruple factorial and so on. - Tom Copeland, Dec 22 2007
G.f.: 1/(1-2x/(1-3x/(1-5x/(1-6x/(1-8x/(1-9x/(1-11x/(1-12x/(1-...))))))))) (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k=0..n} 3^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(3*k+2)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k+2)/(x*(3*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
D-finite with recurrence: a(n) = (9*(n-2)*(n-1)+2)*a(n-2) + 4*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 09 2013
a(n) = n!*Sum_{k=floor(n/2)..n} binomial(k,n-k)*binomial(n+k,k)*3^(-n+k)*(-1)^(n-k). - Vladimir Kruchinin, Sep 28 2013
Recurrence equation: a(n) = 3*a(n-1) + (3*n - 4)^2*a(n-2) with a(0) = 1 and a(1) = 2. A024396 satisfies the same recurrence (but with different initial conditions). This observation leads to a continued fraction expansion for the constant A193534 due to Euler. - Peter Bala, Feb 20 2015
a(n) = A225470(n, 0), n >= 0. - Wolfdieter Lang, May 29 2017
G.f.: Hypergeometric2F0(1, 2/3; -; 3*x). - G. C. Greubel, Mar 31 2019
D-finite with recurrence: a(n) + (-3*n+1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
G.f.: 1/(1-2*x-6*x^2/(1-8*x-30*x^2/(1-14*x-72*x^2/(1-20*x-132*x^2/(1-...))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 28 2020
G.f.: 1/G(0), where G(k) = 1 - (6*k+2)*x - 3*(k+1)*(3*k+2)*x^2/G(k+1). - Nikolaos Pantelidis, Feb 28 2020
Sum_{n>=0} 1/a(n) = 1 + (e/3)^(1/3) * (Gamma(2/3) - Gamma(2/3, 1/3)). - Amiram Eldar, Mar 01 2022

A048854 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,1].

Original entry on oeis.org

1, 2, 1, 12, 12, 1, 120, 180, 30, 1, 1680, 3360, 840, 56, 1, 30240, 75600, 25200, 2520, 90, 1, 665280, 1995840, 831600, 110880, 5940, 132, 1, 17297280, 60540480, 30270240, 5045040, 360360, 12012, 182, 1, 518918400, 2075673600, 1210809600, 242161920, 21621600, 960960, 21840, 240, 1, 17643225600, 79394515200, 52929676800, 12350257920, 1323241920, 73513440, 2227680, 36720, 306, 1
Offset: 0

Views

Author

Keywords

Comments

s(n,x) := Sum_{m=0..n} T(n,m)*x^m are monic polynomials satisfying s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} A048786(n,m)*x^m (row polynomials of triangle A048786) and p(0,x)=1.
In the umbral calculus (see the Roman reference, p. 21) the s(n,x) are called Sheffer polynomials for(1/sqrt(1+4*t),t/(1+4*t)). Here the Sheffer notation differs. See the W. Lang link under A006232.
For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,1], the Sheffer triangle ((1 - 4*t)^(-1/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,1](x, n) = Sum_{m=0..n} L[4,1](n, m)*fallfac[4,1](x, m), where risefac[4,1](x, n) := Product_{0..n-1} (x + (1 + 4*j)) for n >= 1 and risefac[4,1](x, 0) := 1, and fallfac[4,1](x, n) := Product_{0..n-1} (x - (1 + 4*j)) for n >= 1 and fallfac[4,1](x, 0) := 1.
In matrix notation: L[4,1] = S1phat[4,1]*S2hat[4,1] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A290319 and A111578 (but here with offsets 0), respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-1/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292220(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,1] is Sheffer ((1 + 4*t)^(-1/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,1](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,1](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A091042(d, m)*x^m/(1 - x)^{2*d + 1}, for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(n + d),2*d)}{n >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, m) begins:
n\m         0          1          2         3        4      5     6   7 8  ...
0:          1
1:          2          1
2:         12         12          1
3:        120        180         30         1
4:       1680       3360        840        56        1
5:      30240      75600      25200      2520       90      1
6:     665280    1995840     831600    110880     5940    132     1
7:   17297280   60540480   30270240   5045040   360360  12012   182   1
8:  518918400 2075673600 1210809600 242161920 21621600 960960 21840 240 1
...
n = 9: 17643225600 79394515200 52929676800 12350257920 1323241920 73513440 2227680 36720 306 1,
n = 10: 670442572800 3352212864000 2514159648000 670442572800 83805321600 5587021440 211629600 4651200 58140 380 1.
...
Recurrence from a-sequence: T(4, 2) = 2*T(3, 1) + 4*4*T(3, 2) = 2*180 + 16*30 = 840.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(2*120 + 2*180 - 8*30 + 60*1) = 1680.
Four term recurrence: T(4, 2) = T(3, 1) + 2*13*T(3, 2) - 8*3*5*T(2, 2) =  180 + 26*30 - 120*1 = 840.
Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(12 + 12*x + 1*x^2) = (12 + 2*x) - 4*2 = 2*(2 + x).
Sheffer recurrence for R(3, x): [(2 + x) + 8*(1 + x)*D_x + 16*x*(D_x)^2] (12 + 12*x + 1*x^2) = (2 + x)*(12 + 12*x + x^2) + 8*(1 + x)*(12 + 2*x) + 16*2*x = 120 + 180*x + 30*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*10/2)*(1*30/3! + 4*1/2!) = 840.
Diagonal sequence d = 2: {12, 180, 840 ...} has o.g.f. 12*(1 + 10*x + 5*x^2)/(1 - x)^5  (see A001813(2) and row n=2 of A091042) generating
{12*binomial(2*(n + 2), 4)}_{n >= 0}. - _Wolfdieter Lang_, Oct 12 2017
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

Crossrefs

Related to triangle A046521. Cf. A048786. a(n, 0) = A001813.
A111578, A271703 L[1,0], A286724 L[2,1], A290319, A290596 L[3,1], A290597 L[3,2], A292220.
The diagonal sequences are: A000012, 2*A000384(n+1), 12*A053134, 120*A053135, 1680*A053137, ... - Wolfdieter Lang, Oct 12 2017

Programs

  • Maple
    A290604_row := proc(n) exp(x*t/(1-4*t))/sqrt(1-4*t): series(%, t, n+2): seq(n!*coeff(coeff(%,t,n),x,j), j=0..n) end: seq(A290604_row(n), n=0..9); # Peter Luschny, Sep 23 2017
  • Mathematica
    T[n_, m_] := n!/m! * Binomial[2*n, n] * Binomial[n, m] / Binomial[2*m, m]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
    T[0, 0] = 1; T[-1, ] = T[, -1] = 0; T[n_, m_] /; n < m = 0; T[n_, m_] := T[n, m] = T[n-1, m-1] + 2*(4*n-3)*T[n-1, m] - 8*(n-1)*(2*n-3)*T[n-2, m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Sep 23 2017 *)

Formula

T(n, m) = (n!/m!)*A046521(n, m) = (n!/m!)* binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0, a(n, m) := 0, n < m.
Sum_{n>=0, k>=0} T(n, k)*x^n*y^k/(2*n)! = exp(x)*cosh(sqrt(x*y)). - Vladeta Jovovic, Feb 21 2003
T(n, m) = L[4,1](n,m) = Sum_{k=m..n} A290319(n, k)*A111578(k+1, m+1), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-1/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-1/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0..n-1} z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and the z(j) = 2*A292220(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 3)*T(n-1, m) - 8*(n-1)*(2*n - 3)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 8*(1 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 4*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n,2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017

Extensions

Name changed, after merging my newer duplicate, from Wolfdieter Lang, Oct 10 2017

A290597 Numerators in the expansion of the exponential generating function ((1 + 3*x)/x)*(1 - (1 + 3*x)^(-2/3)).

Original entry on oeis.org

2, 1, -10, 20, -176, 6160, -29920, 523600, -96342400, 250490240, -6603833600, 581137356800, -6258402304000, 220832195584000, -25351536053043200, 348583620729344000, -15419698987556864000, 6553372069711667200000, -36560917862601932800000, 1945040830290422824960000, -327878311391814133350400000, 6468144870183969721548800000, -402149876711438117470208000000, 78620300897086151965425664000000, -1786253236381797372654471086080000, 127098787973320197669645058048000000
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2017

Keywords

Comments

The denominators are A038500(n+1), n >= 0.
The rationals z(n) = a(n)/A038500(n+1) give the Sheffer z-sequence for the generalized unsigned Lah triangle L[3,1] = A290596. For Sheffer a- and z-sequences see a W. Lang link under A006232 with the references for the Riordan case, and also the present link for a proof.

Examples

			The rationals r(n) = z(3,1;n) = a(n)/A038500(n+1) begin: {2, 1, -10/3, 20, -176, 6160/3, -29920, 523600, -96342400/9, 250490240, -6603833600, 581137356800/3, -6258402304000, 220832195584000, -25351536053043200/3, 348583620729344000, ...}.
		

Crossrefs

Cf. A038500, A290596, A290603 (z(3,2;n)).

Formula

a(n) = numerator(r(n)) with the rationals r(n) = [x^n/n!] ((1 + 3*x)/x)*(1 - (1 + 3*x)^(-2/3)).

A292219 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,3].

Original entry on oeis.org

1, 6, 1, 60, 20, 1, 840, 420, 42, 1, 15120, 10080, 1512, 72, 1, 332640, 277200, 55440, 3960, 110, 1, 8648640, 8648640, 2162160, 205920, 8580, 156, 1, 259459200, 302702400, 90810720, 10810800, 600600, 16380, 210, 1, 8821612800, 11762150400, 4116752640, 588107520, 40840800, 1485120, 28560, 272, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 23 2017

Keywords

Comments

For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,3], the Sheffer triangle ((1 - 4*t)^(-3/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,3](x, n) = Sum_{m=0..n} L[4,3](n, m)*fallfac[4,3](x, m), where risefac[4,3](x, n) := Product_{0..n-1} (x + (3 + 4*j)) for n >= 1 and risefac[4,3](x, 0) := 1, and fallfac[4,3](x, n):= Product_{0..n-1} (x - (3 + 4*j)) for n >= 1 and fallfac[4,3](x, 0) := 1.
In matrix notation: L[4,3] = S1phat[4,3]*S2hat[4,3] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A225471 and A225469, respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-3/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292221(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,3] is Sheffer ((1 + 4*t)^(-3/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,3](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,3](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A103327(d, m)*x^m/(1 - x)^(2*d + 1), for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(m + d) + 1, 2*d)}{m >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, m) begins:
  n\m          0           1          2         3        4       5     6   7  8
  0:           1
  1:           6           1
  2:          60          20          1
  3:         840         420         42         1
  4:       15120       10080       1512        72        1
  5:      332640      277200      55440      3960      110       1
  6:     8648640     8648640    2162160    205920     8580     156     1
  7:   259459200   302702400   90810720  10810800   600600   16380   210   1
  8:  8821612800 11762150400 4116752640 588107520 40840800 1485120 28560 272  1
  ...
Recurrence from a-sequence: T(4, 2) = (4/2)*T(3, 1) + 4*4*T(3, 2) = 2*420 + 16*42 = 1512.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(6*840 - 6*420 + 40*42 -420*1) = 15120.
Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(60 + 20*x + 1*x^2 ) = (20 + 2*x) - 4*2 = 2*(6 + x).
Sheffer recurrence for R(3, x): [(6 + x) + 8*(3 + x)*D_x + 16*x*(D_x)^2] (60 + 20*x + 1*x^2) = (6 + x)*(60 + 20*x + x^2) + 8*(3 + x)*(20 + 2*x) + 16*2*x = 840 + 420*x + 42*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (2*4!/2)*(3 + 2*2)*(1*42/3! + 4*1/2!) = 1512.
Diagonal sequence d = 2: {60, 420, 1512, ...} has o.g.f. 12*(5 + 10*x + x^2)/(1 - x)^5 (see A001813(2) and row n=2 of A103327) generating {12*binomial(2*(m + 2) + 1, 4)}_{m >= 0}. - _Wolfdieter Lang_, Oct 12 2017
		

References

  • Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

Crossrefs

Cf. A225469, A225471, A271703 L[1,0], A286724 L[2,1], A290596 L[3,1], A290597 L[3,2], A048854 L[4,1], A292221, A103327,
Diagonal sequences: A000012, 2*A014105(m+1), 12*A053126(m+4), 120*A053128(m+6), A053130(n+8), ... - Wolfdieter Lang, Oct 12 2017

Formula

T(n, m) = L[4,3](n,m) = Sum_{k=m..n} A225471(n, k)*A225469(k, m), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-3/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-3/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries k >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and z(j) = 2*A292221(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 1)*T(n-1, m) - 8*(n-1)*(2*n - 1)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(6 + x)*1 + 8*(3 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (2*n!/(n-m))*(3 + 2*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n + 1, 2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017

A290598 Triangle read by rows. A generalization of unsigned Lah numbers, called L[3,2].

Original entry on oeis.org

1, 4, 1, 28, 14, 1, 280, 210, 30, 1, 3640, 3640, 780, 52, 1, 58240, 72800, 20800, 2080, 80, 1, 1106560, 1659840, 592800, 79040, 4560, 114, 1, 24344320, 42602560, 18258240, 3043040, 234080, 8778, 154, 1, 608608000, 1217216000, 608608000, 121721600, 11704000, 585200, 15400, 200, 1, 17041024000, 38342304000, 21909888000, 5112307200, 589881600, 36867600, 1293600, 25200, 252, 1, 528271744000, 1320679360000, 849008160000, 226402176000, 30477216000, 2285791200, 100254000, 2604000, 39060, 310, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2017

Keywords

Comments

For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[3,2], the Sheffer triangle ((1 - 3*t)^(-4/3), t/(1 - 3*t)). It is defined as transition matrix risefac[3,2](x, n) = Sum_{m=0..n} L[3,2](n, m)*fallfac[3,2](x, m), where risefac[3,2](x, n):= Product_{0..n-1} (x + (2 + 3*j)) for n >= 1 and risefac[3,2](x, 0) := 1, and fallfac[3,2](x, n):= Product_{0..n-1} (x - (2 + 3*j)) for n >= 1 and fallfac[3,2](x, 0) := 1.
In matrix notation: L[3,2] = S1phat[3,2]*S2hat[3,2] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A225470 and A225468, respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s 1 + 3*t and (1 + 3*t)*(1 - (1 + 3*t)^(-4/3))/t, respectively. That is, a = {1, 3, repeat(0)} and z(n) = A290603(n)/A038500(n+1). See a W. Lang link under A006232 for these types of sequences with a reference, and also the present link, eq. (142).
The inverse matrix T^(-1) = L^(-1)[3,2] is Sheffer ((1 + 3*t)^(-4/3), t/(1 + 3*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[3,2](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[3,2](x, m), n >= 0.

Examples

			The triangle T(n, m) begins:
n\m          0          1         2         3        4      5     6   7 8  ...
0:           1
1:           4          1
2:          28         14         1
3:         280        210        30         1
4:        3640       3640       780        52        1
5:       58240      72800     20800      2080       80      1
6:     1106560    1659840    592800     79040     4560    114     1
7:    24344320   42602560  18258240   3043040   234080   8778   154   1
8:   608608000 1217216000 608608000 121721600 11704000 585200 15400 200 1
...
n = 9: 17041024000 38342304000 21909888000 5112307200 589881600 36867600 1293600 25200 252 1,
n = 10: 528271744000 1320679360000 849008160000 226402176000 30477216000 2285791200 100254000 2604000 39060 310 1.
...
Recurrence from a-sequence:  T(4, 2) = (4/2)*T(3, 1) + 3*4*T(3, 2) = 2*210 + 12*30 = 780.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2) + z(3)*T(3, 3)) = 4*(4* 280  - 2*210 + (28/3)*30 - 70*1) = 3640.
Four term recurrence: T(4, 2) = T(3, 1) + 2*11*T(3, 2) - 3*3*10*T(2, 2) =  210 + 22*30  - 90*1 = 780.
Meixner type identity for n = 2: (D_x - 3*(D_x)^2)*(28 + 14*x + x^2) = (14 + 2*x) - 3*2 = 2*(4 + x).
Sheffer recurrence for R(3, x): [(4 + x) + 6*(2 + x)*D_x + 9*x*(D_x)^2] (28 + 14*x + x^2) = (4 + x)*(28 + 14*x + x^2) + 6*(2 + x)*(14 + 2*x) + 9*2*x= 280 + 210*x + 30*x^2 + x^3 =  R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*(4 + 3*2)/2)*(1*30/3! + 3*1/2!) = 780.
		

References

  • Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

Crossrefs

Cf. A007559(n+1) (column m=0), A225468, A225470, A271703 L[1,0], A286724 L[2,1], A290596, L[3,1], A290603.

Formula

T(n, m) = L[3,2](n,m) = Sum_{k=m..n} A225470(n, k) * A225468(k, m), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 3*t)^(-4/3)*exp(x*t/(1 - 3*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 3*t)^(-4/3)*(t/(1 - 3*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 3*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), from the a-sequence {1, 3 repeat(0)} and the z-sequence given above.
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(3*n - 1)*T(n-1, m) - 3*(n-1)*(3*n - 2)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 3*D_x)) * R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-3)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(4 + x)*1 + 6*(2 + x)*D_x + 3^2*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(4 + 3*m)*Sum_{p=0..n-1-m} 3^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Showing 1-5 of 5 results.