A290600 Irregular triangle T(n, k) read by rows: positive numbers non-coprime to A002808(n) and smaller than A002808(n), sorted increasingly.
2, 2, 3, 4, 2, 4, 6, 3, 6, 2, 4, 5, 6, 8, 2, 3, 4, 6, 8, 9, 10, 2, 4, 6, 7, 8, 10, 12, 3, 5, 6, 9, 10, 12, 2, 4, 6, 8, 10, 12, 14, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 3, 6, 7, 9, 12, 14, 15, 18
Offset: 1
Examples
The irregular triangle T(n, k) begins (N(n) = A002808(n)): n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1 4 2 2 6 2 3 4 3 8 2 4 6 4 9 3 6 5 10 2 4 5 6 8 6 12 2 3 4 6 8 9 10 7 14 2 4 6 7 8 10 12 8 15 3 5 6 9 10 12 9 16 2 4 6 8 10 12 14 10 18 2 3 4 6 8 9 10 12 14 15 16 11 20 2 4 5 6 8 10 12 14 15 16 18 12 21 3 6 7 9 12 14 15 18 13 22 2 4 6 8 10 11 12 14 16 18 20 14 24 2 3 4 6 8 9 10 12 14 15 16 18 20 21 22 15 25 5 10 15 20 ...
Programs
-
Mathematica
Table[With[{c = FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1]}, Select[Range[c - 1], ! CoprimeQ[#, c] &]], {n, 12}] // Flatten (* Michael De Vlieger, Sep 03 2017 *)
Formula
T(n, k) = k-th entry in the list of increasingly sorted numbers of the set {m = 1..A002808(n)-1: gcd(n, m) not equal to 1}.
Comments