A290602
Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).
Original entry on oeis.org
1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 4, 2, 2, 1, 1, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 3, 1, 2, 1, 1, 1, 6, 1, 3, 4, 2, 1, 1, 4, 1, 4, 2, 2, 1, 4, 6, 2, 1, 3, 6, 2, 1, 3, 10, 5, 10, 10, 2, 1, 1, 5, 5, 10, 5, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1
Offset: 1
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 1
2 6 2 1 1
3 8 1 1 1
4 9 1 1
5 10 4 2 1 1 4
6 12 2 2 1 1 2 1 1
7 14 3 3 2 1 1 6 6
8 15 4 2 1 2 1 4
9 16 1 1 1 1 1 1 1
10 18 6 1 3 1 2 1 1 1 6 1 3
11 20 4 2 1 1 4 1 4 2 2 1 4
12 21 6 2 1 3 6 2 1 3
13 22 10 5 10 10 2 1 1 5 5 10 5
14 24 2 2 1 1 2 1 1 1 2 2 1 1 2 2 1
15 25 1 1 1 1
...
T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4).
T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6).
The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6).
The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin:
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11
1 4 (2,1)
2 6 (1,2) (1,1) (1,1)
3 8 (3,1) (2,1) (3,1)
4 9 (2,1) (2,1)
5 10 (1,4) (1,2) (1,1) (1,1) (1,4)
6 12 (2,2) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1)
7 14 (1,3) (1,3) (1,2) (1,1) (1,1) (1,6) (1,6)
8 15 (1,4) (1,2) (1,1) (1,2) (1,1) (1,4)
9 16 (4,1) (2,1) (4,1) (2,1) (4,1) (2,1) (4,1)
10 18 (1,6) (2,1) (1,3) (2,1) (1,2) (1,1) (1,1) (2,1) (1,6) (2,1) (1,3)
11 20 (2,4) (1,2) (1,1) (2,1) (1,4) (2,1) (1,4) (2,2) (1,2) (1,1) (2,4)
12 21 (1,6) (1,2) (1,1) (1,3) (1,6) (1,2) (1,1) (1,3)
13 22 (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5)
...
----------------------------------------------------------------------------------
A290601
Irregular triangle read by rows: T(n, k) gives the least positive integer imin such that the sequence {A290600(n, k)^i}_{i >= imin} (mod A002808(n)) is periodic.
Original entry on oeis.org
2, 1, 1, 1, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 2, 4, 2, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 3, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2
Offset: 1
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 2
2 6 1 1 1
3 8 3 2 3
4 9 2 2
5 10 1 1 1 1 1
6 12 2 1 1 2 1 1 2
7 14 1 1 1 1 1 1 1
8 15 1 1 1 1 1 1
9 16 4 2 4 2 4 2 4
10 18 1 2 1 2 1 1 1 2 1 2 1
11 20 2 1 1 2 1 2 1 2 1 1 2
12 21 1 1 1 1 1 1 1 1
13 22 1 1 1 1 1 1 1 1 1 1 1
14 24 3 1 2 3 1 1 3 2 3 1 1 3 2 1 3
15 25 2 2 2 2
...
T(4, 1) = 2 because A290600(4, 1) = 3, A002808(4) = 9 and {3^i}_{i>=2} (mod 9) = {repeat(0)}, but 3^0 == 1 (mod 9) and 3^1 == 3 (mod 9).
T(4, 2) = 2 because A290600(4, 2) = 6 and {6^i}_{i>=2} (mod 9) == {repeat(0)}, and 6^0 (mod 9) = 1, 6^1 (mod 9) = 6.
Example for a proof of periodicity of type (1,6) for K = A290600(10, 1) = 2, N = A002808(10) = 18: 2^imin*(2^P - 1) == 0 (mod 18). gcd(2^imin, 18) = 2, and with imin = 1 one has 2^P == 1 (mod 9). Since gcd(2, 9) = 1, a solution exists (Euler): P = phi(9) = 6.
A290599
Number of numbers from 1 to A002808(n) - 1 that are non-coprime to A002808(n).
Original entry on oeis.org
1, 3, 3, 2, 5, 7, 7, 6, 7, 11, 11, 8, 11, 15, 4, 13, 8, 15, 21, 15, 12, 17, 10, 23, 19, 14, 23, 29, 23, 20, 23, 31, 6, 29, 18, 27, 35, 14, 31, 20, 29, 43, 31, 26, 31, 16, 45, 35, 24, 45, 47, 37, 34, 39, 16, 53, 47, 26, 41, 59, 20, 43, 30, 47, 65, 18, 47, 32, 47, 22, 63, 55, 38, 59
Offset: 1
a(4) = 2 because A002808(4) = 9, with the two non-coprime positive numbers smaller than 9, namely 3 and 6. See row n = 4 of A290600.
A366192
Pairs (i, j) of noncoprime positive integers sorted first by i + j then by i.
Original entry on oeis.org
2, 2, 2, 4, 3, 3, 4, 2, 2, 6, 4, 4, 6, 2, 3, 6, 6, 3, 2, 8, 4, 6, 5, 5, 6, 4, 8, 2, 2, 10, 3, 9, 4, 8, 6, 6, 8, 4, 9, 3, 10, 2, 2, 12, 4, 10, 6, 8, 7, 7, 8, 6, 10, 4, 12, 2, 3, 12, 5, 10, 6, 9, 9, 6, 10, 5, 12, 3, 2, 14, 4, 12, 6, 10, 8, 8, 10, 6, 12, 4, 14, 2
Offset: 1
The first few pairs are, seen as an irregular triangle (where rows with a prime index are empty (and are therefore missing)):
[2, 2],
[2, 4], [3, 3], [4, 2],
[2, 6], [4, 4], [6, 2],
[3, 6], [6, 3],
[2, 8], [4, 6], [5, 5], [6, 4], [ 8, 2],
[2, 10], [3, 9], [4, 8], [6, 6], [ 8, 4], [ 9, 3], [10, 2],
[2, 12], [4, 10], [6, 8], [7, 7], [ 8, 6], [10, 4], [12, 2],
[3, 12], [5, 10], [6, 9], [9, 6], [10, 5], [12, 3],
...
There are A016035(n) pairs in row n.
-
aList := proc(upto) local F, P, n, t, count;
P := NULL; count := 0:
for n from 2 while count < upto do
F := select(t -> igcd(t, n - t) <> 1, [$1..n-1]);
P := P, seq([t, n - t], t = F);
count := count + nops([F]) od:
ListTools:-Flatten([P]) end:
aList(16);
-
A366192row[n_]:=Select[Array[{#,n-#}&,n-1],!CoprimeQ[First[#],Last[#]]&];
Array[A366192row,20,2] (* Paolo Xausa, Nov 28 2023 *)
-
from math import gcd
from itertools import chain, count, islice
def A366192_gen(): # generator of terms
return chain.from_iterable((i,n-i) for n in count(2) for i in range(1,n) if gcd(i,n-i)>1)
A366192_list = list(islice(A366192_gen(),30)) # Chai Wah Wu, Oct 10 2023
Showing 1-4 of 4 results.
Comments