A290602
Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).
Original entry on oeis.org
1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 4, 2, 2, 1, 1, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 3, 1, 2, 1, 1, 1, 6, 1, 3, 4, 2, 1, 1, 4, 1, 4, 2, 2, 1, 4, 6, 2, 1, 3, 6, 2, 1, 3, 10, 5, 10, 10, 2, 1, 1, 5, 5, 10, 5, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1
Offset: 1
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 1
2 6 2 1 1
3 8 1 1 1
4 9 1 1
5 10 4 2 1 1 4
6 12 2 2 1 1 2 1 1
7 14 3 3 2 1 1 6 6
8 15 4 2 1 2 1 4
9 16 1 1 1 1 1 1 1
10 18 6 1 3 1 2 1 1 1 6 1 3
11 20 4 2 1 1 4 1 4 2 2 1 4
12 21 6 2 1 3 6 2 1 3
13 22 10 5 10 10 2 1 1 5 5 10 5
14 24 2 2 1 1 2 1 1 1 2 2 1 1 2 2 1
15 25 1 1 1 1
...
T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4).
T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6).
The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6).
The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin:
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11
1 4 (2,1)
2 6 (1,2) (1,1) (1,1)
3 8 (3,1) (2,1) (3,1)
4 9 (2,1) (2,1)
5 10 (1,4) (1,2) (1,1) (1,1) (1,4)
6 12 (2,2) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1)
7 14 (1,3) (1,3) (1,2) (1,1) (1,1) (1,6) (1,6)
8 15 (1,4) (1,2) (1,1) (1,2) (1,1) (1,4)
9 16 (4,1) (2,1) (4,1) (2,1) (4,1) (2,1) (4,1)
10 18 (1,6) (2,1) (1,3) (2,1) (1,2) (1,1) (1,1) (2,1) (1,6) (2,1) (1,3)
11 20 (2,4) (1,2) (1,1) (2,1) (1,4) (2,1) (1,4) (2,2) (1,2) (1,1) (2,4)
12 21 (1,6) (1,2) (1,1) (1,3) (1,6) (1,2) (1,1) (1,3)
13 22 (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5)
...
----------------------------------------------------------------------------------
A290600
Irregular triangle T(n, k) read by rows: positive numbers non-coprime to A002808(n) and smaller than A002808(n), sorted increasingly.
Original entry on oeis.org
2, 2, 3, 4, 2, 4, 6, 3, 6, 2, 4, 5, 6, 8, 2, 3, 4, 6, 8, 9, 10, 2, 4, 6, 7, 8, 10, 12, 3, 5, 6, 9, 10, 12, 2, 4, 6, 8, 10, 12, 14, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 3, 6, 7, 9, 12, 14, 15, 18
Offset: 1
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 2
2 6 2 3 4
3 8 2 4 6
4 9 3 6
5 10 2 4 5 6 8
6 12 2 3 4 6 8 9 10
7 14 2 4 6 7 8 10 12
8 15 3 5 6 9 10 12
9 16 2 4 6 8 10 12 14
10 18 2 3 4 6 8 9 10 12 14 15 16
11 20 2 4 5 6 8 10 12 14 15 16 18
12 21 3 6 7 9 12 14 15 18
13 22 2 4 6 8 10 11 12 14 16 18 20
14 24 2 3 4 6 8 9 10 12 14 15 16 18 20 21 22
15 25 5 10 15 20
...
-
Table[With[{c = FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1]}, Select[Range[c - 1], ! CoprimeQ[#, c] &]], {n, 12}] // Flatten (* Michael De Vlieger, Sep 03 2017 *)
A290601
Irregular triangle read by rows: T(n, k) gives the least positive integer imin such that the sequence {A290600(n, k)^i}_{i >= imin} (mod A002808(n)) is periodic.
Original entry on oeis.org
2, 1, 1, 1, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 2, 4, 2, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 3, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2
Offset: 1
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 2
2 6 1 1 1
3 8 3 2 3
4 9 2 2
5 10 1 1 1 1 1
6 12 2 1 1 2 1 1 2
7 14 1 1 1 1 1 1 1
8 15 1 1 1 1 1 1
9 16 4 2 4 2 4 2 4
10 18 1 2 1 2 1 1 1 2 1 2 1
11 20 2 1 1 2 1 2 1 2 1 1 2
12 21 1 1 1 1 1 1 1 1
13 22 1 1 1 1 1 1 1 1 1 1 1
14 24 3 1 2 3 1 1 3 2 3 1 1 3 2 1 3
15 25 2 2 2 2
...
T(4, 1) = 2 because A290600(4, 1) = 3, A002808(4) = 9 and {3^i}_{i>=2} (mod 9) = {repeat(0)}, but 3^0 == 1 (mod 9) and 3^1 == 3 (mod 9).
T(4, 2) = 2 because A290600(4, 2) = 6 and {6^i}_{i>=2} (mod 9) == {repeat(0)}, and 6^0 (mod 9) = 1, 6^1 (mod 9) = 6.
Example for a proof of periodicity of type (1,6) for K = A290600(10, 1) = 2, N = A002808(10) = 18: 2^imin*(2^P - 1) == 0 (mod 18). gcd(2^imin, 18) = 2, and with imin = 1 one has 2^P == 1 (mod 9). Since gcd(2, 9) = 1, a solution exists (Euler): P = phi(9) = 6.
Showing 1-3 of 3 results.
Comments