cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A290602 Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 4, 2, 2, 1, 1, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 3, 1, 2, 1, 1, 1, 6, 1, 3, 4, 2, 1, 1, 4, 1, 4, 2, 2, 1, 4, 6, 2, 1, 3, 6, 2, 1, 3, 10, 5, 10, 10, 2, 1, 1, 5, 5, 10, 5, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Aug 30 2017

Keywords

Comments

The length of row n is A290599(n).
See A290601 for the proof that this sequence is defined, and the definition of the type of periodicity (imin,P) with imin = A290601(n, k) and the period length P = T(n, k).

Examples

			The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n   N(n) \ k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
1   4         1
2   6         2  1  1
3   8         1  1  1
4   9         1  1
5   10        4  2  1  1  4
6   12        2  2  1  1  2  1  1
7   14        3  3  2  1  1  6  6
8   15        4  2  1  2  1  4
9   16        1  1  1  1  1  1  1
10  18        6  1  3  1  2  1  1  1  6  1  3
11  20        4  2  1  1  4  1  4  2  2  1  4
12  21        6  2  1  3  6  2  1  3
13  22       10  5 10 10  2  1  1  5  5 10  5
14  24        2  2  1  1  2  1  1  1  2  2  1  1  2  2  1
15  25        1  1  1  1
...
T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4).
T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6).
The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6).
The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin:
n   N(n) \ k    1     2      3      4     5     6     7     8     9      10    11
1   4         (2,1)
2   6         (1,2) (1,1)  (1,1)
3   8         (3,1) (2,1)  (3,1)
4   9         (2,1) (2,1)
5   10        (1,4) (1,2)  (1,1)  (1,1) (1,4)
6   12        (2,2) (1,2)  (1,1)  (2,1) (1,2) (1,1) (2,1)
7   14        (1,3) (1,3)  (1,2)  (1,1) (1,1) (1,6) (1,6)
8   15        (1,4) (1,2)  (1,1)  (1,2) (1,1) (1,4)
9   16        (4,1) (2,1)  (4,1)  (2,1) (4,1) (2,1) (4,1)
10  18        (1,6) (2,1)  (1,3)  (2,1) (1,2) (1,1) (1,1) (2,1) (1,6)  (2,1) (1,3)
11  20        (2,4) (1,2)  (1,1)  (2,1) (1,4) (2,1) (1,4) (2,2) (1,2)  (1,1) (2,4)
12  21        (1,6) (1,2)  (1,1)  (1,3) (1,6) (1,2) (1,1) (1,3)
13  22       (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5)
...
----------------------------------------------------------------------------------
		

Crossrefs

A057593 Triangle T(n, k) giving period length of the periodic sequence k^i (i >= imin) mod n (n >= 2, 1 <= k <= n-1).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 4, 4, 2, 1, 2, 1, 1, 2, 1, 3, 6, 3, 6, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 3, 6, 1, 3, 2, 1, 4, 4, 2, 1, 1, 4, 4, 2, 1, 10, 5, 5, 5, 10, 10, 10, 5, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2, 1
Offset: 2

Views

Author

Gottfried Helms, Oct 05 2000

Keywords

Comments

From Wolfdieter Lang, Sep 04 2017: (Start)
i) If gcd(n, k) = 1 then imin = imin(n, k) = 0 and the length of the period P = T(n, k) = order(n, k), given in A216327 corresponding to the numbers of A038566. This is due to Euler's theorem. E.g., T(4, 3) = 2 because A216327(4, 2) = 2 corresponding to A038566(4, 2) = 3.
ii) If gcd(n, k) is not 1 then the smallest nonnegative index imin = imin(n, k) is obtained from A290601 with the corresponding length of the period given in A290602. Also in this case the sequence always becomes periodic, because one of the possible values from {0, 1, ..., n-1} has to appear a second time because the sequence has more than n entries. Example: T(4, 2) = 1 because imin is given by A290601(1, 1) = 2 (corresponding to the present n = 4, k = 2 values) with the length of the period P given by A290602(1, 1) = 1. (End)

Examples

			If n=7, k=2, (imin = 0) the sequence is 1,2,4,1,2,4,1,2,4,... of period 3, so T(7,2) = 3. The triangle T(n, k) begins:
n \ k 1   2   3  4   5   6   7   8  9  10  11  12  13  14 15 16 17 ...
2:    1
3:    1   2
4:    1   1   2
5:    1   4   4  2
6:    1   2   1  1   2
7:    1   3   6  3   6   2
8:    1   1   2  1   2   1   2
9:    1   6   1  3   6   1   3   2
10:   1   4   4  2   1   1   4   4  2
11:   1  10   5  5   5  10  10  10  5   2
12:   1   2   2  1   2   1   2   2  1   1   2
13:   1  12   3  6   4  12  12   4  3   6  12   2
14:   1   3   6  3   6   2   1   1  3   6   3   6   2
15:   1   4   4  2   2   1   4   4  2   1   2   4   4  2
16:   1   1   4  1   4   1   2   1  2   1   4   1   4  1  2
17:   1   8  16  4  16  16  16   8  8  16  16  16   4  16  8  2
18:   1   6   1  3   6   1   3   2  1   1   6   1   3   6  1  1  2
... Reformatted and extended. - _Wolfdieter Lang_, Sep 04 2017
From _Wolfdieter Lang_, Sep 04 2017: (Start)
The  table imin(n, k) begins:
n \ k 1   2   3   4   5   6   7   8  9  10  11  12  13  14  15  16 17 ...
2:    0
3:    0   0
4:    0   2   0
5:    0   0   0   0
6:    0   1   1   1   0
7:    0   0   0   0   0   0
8:    0   3   0   2   0   3   0
9:    0   0   2   0   0   2   0   0
10:   0   1   0   1   1   1   0   1  0
11:   0   0   0   0   0   0   0   0  0   0
12:   0   2   1   1   0   2   0   1  1   2   0
13:   0   0   0   0   0   0   0   0  0   0   0   0
14:   0   1   0   1   0   1   1   1  0   1   0   1   0
15:   0   0   1   0   1   1   0   0  1   1   0   1   0   0
16:   0   4   0   2   0   4   0   2  0   4   0   2   0   4   0
17:   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0
18:   0   1   2   1   0   2   0   1  1   1   0   2   0   1   2   1  0
... (End)
		

Crossrefs

Cf. A086145 (prime rows), A216327 (entries with gcd(n,k) = 1), A139366.

Programs

  • Mathematica
    period[lst_] := Module[{n, i, j}, n=Length[lst]; For[j=2, j <= n, j++, For[i=1, iJean-François Alcover, Feb 04 2015 *)

Extensions

Constraint on k changed from 2 <= k <= n to 1 <= k < n, based on comment from Franklin T. Adams-Watters, Jan 19 2006, by David Applegate, Mar 11 2014
Name changed and table extended by Wolfdieter Lang, Sep 04 2017

A290600 Irregular triangle T(n, k) read by rows: positive numbers non-coprime to A002808(n) and smaller than A002808(n), sorted increasingly.

Original entry on oeis.org

2, 2, 3, 4, 2, 4, 6, 3, 6, 2, 4, 5, 6, 8, 2, 3, 4, 6, 8, 9, 10, 2, 4, 6, 7, 8, 10, 12, 3, 5, 6, 9, 10, 12, 2, 4, 6, 8, 10, 12, 14, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 3, 6, 7, 9, 12, 14, 15, 18
Offset: 1

Views

Author

Wolfdieter Lang, Aug 30 2017

Keywords

Comments

The length of row n is A290599(n).
Row n gives the complement of row A038566(A002808(n), k) with respect to [1, 2, ..., A002808(n) - 1].

Examples

			The irregular triangle T(n, k) begins (N(n) = A002808(n)):
  n   N(n) \ k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  1   4         2
  2   6         2  3  4
  3   8         2  4  6
  4   9         3  6
  5   10        2  4  5  6  8
  6   12        2  3  4  6  8  9 10
  7   14        2  4  6  7  8 10 12
  8   15        3  5  6  9 10 12
  9   16        2  4  6  8 10 12 14
  10  18        2  3  4  6  8  9 10 12 14 15 16
  11  20        2  4  5  6  8 10 12 14 15 16 18
  12  21        3  6  7  9 12 14 15 18
  13  22        2  4  6  8 10 11 12 14 16 18 20
  14  24        2  3  4  6  8  9 10 12 14 15 16 18 20 21 22
  15  25        5 10 15 20
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[With[{c = FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1]}, Select[Range[c - 1], ! CoprimeQ[#, c] &]], {n, 12}] // Flatten (* Michael De Vlieger, Sep 03 2017 *)

Formula

T(n, k) = k-th entry in the list of increasingly sorted numbers of the set {m = 1..A002808(n)-1: gcd(n, m) not equal to 1}.
Showing 1-3 of 3 results.