A290602
Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).
Original entry on oeis.org
1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 4, 2, 2, 1, 1, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 3, 1, 2, 1, 1, 1, 6, 1, 3, 4, 2, 1, 1, 4, 1, 4, 2, 2, 1, 4, 6, 2, 1, 3, 6, 2, 1, 3, 10, 5, 10, 10, 2, 1, 1, 5, 5, 10, 5, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1
Offset: 1
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 1
2 6 2 1 1
3 8 1 1 1
4 9 1 1
5 10 4 2 1 1 4
6 12 2 2 1 1 2 1 1
7 14 3 3 2 1 1 6 6
8 15 4 2 1 2 1 4
9 16 1 1 1 1 1 1 1
10 18 6 1 3 1 2 1 1 1 6 1 3
11 20 4 2 1 1 4 1 4 2 2 1 4
12 21 6 2 1 3 6 2 1 3
13 22 10 5 10 10 2 1 1 5 5 10 5
14 24 2 2 1 1 2 1 1 1 2 2 1 1 2 2 1
15 25 1 1 1 1
...
T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4).
T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6).
The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6).
The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin:
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11
1 4 (2,1)
2 6 (1,2) (1,1) (1,1)
3 8 (3,1) (2,1) (3,1)
4 9 (2,1) (2,1)
5 10 (1,4) (1,2) (1,1) (1,1) (1,4)
6 12 (2,2) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1)
7 14 (1,3) (1,3) (1,2) (1,1) (1,1) (1,6) (1,6)
8 15 (1,4) (1,2) (1,1) (1,2) (1,1) (1,4)
9 16 (4,1) (2,1) (4,1) (2,1) (4,1) (2,1) (4,1)
10 18 (1,6) (2,1) (1,3) (2,1) (1,2) (1,1) (1,1) (2,1) (1,6) (2,1) (1,3)
11 20 (2,4) (1,2) (1,1) (2,1) (1,4) (2,1) (1,4) (2,2) (1,2) (1,1) (2,4)
12 21 (1,6) (1,2) (1,1) (1,3) (1,6) (1,2) (1,1) (1,3)
13 22 (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5)
...
----------------------------------------------------------------------------------
A057593
Triangle T(n, k) giving period length of the periodic sequence k^i (i >= imin) mod n (n >= 2, 1 <= k <= n-1).
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 1, 4, 4, 2, 1, 2, 1, 1, 2, 1, 3, 6, 3, 6, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 3, 6, 1, 3, 2, 1, 4, 4, 2, 1, 1, 4, 4, 2, 1, 10, 5, 5, 5, 10, 10, 10, 5, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2, 1
Offset: 2
If n=7, k=2, (imin = 0) the sequence is 1,2,4,1,2,4,1,2,4,... of period 3, so T(7,2) = 3. The triangle T(n, k) begins:
n \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
2: 1
3: 1 2
4: 1 1 2
5: 1 4 4 2
6: 1 2 1 1 2
7: 1 3 6 3 6 2
8: 1 1 2 1 2 1 2
9: 1 6 1 3 6 1 3 2
10: 1 4 4 2 1 1 4 4 2
11: 1 10 5 5 5 10 10 10 5 2
12: 1 2 2 1 2 1 2 2 1 1 2
13: 1 12 3 6 4 12 12 4 3 6 12 2
14: 1 3 6 3 6 2 1 1 3 6 3 6 2
15: 1 4 4 2 2 1 4 4 2 1 2 4 4 2
16: 1 1 4 1 4 1 2 1 2 1 4 1 4 1 2
17: 1 8 16 4 16 16 16 8 8 16 16 16 4 16 8 2
18: 1 6 1 3 6 1 3 2 1 1 6 1 3 6 1 1 2
... Reformatted and extended. - _Wolfdieter Lang_, Sep 04 2017
From _Wolfdieter Lang_, Sep 04 2017: (Start)
The table imin(n, k) begins:
n \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
2: 0
3: 0 0
4: 0 2 0
5: 0 0 0 0
6: 0 1 1 1 0
7: 0 0 0 0 0 0
8: 0 3 0 2 0 3 0
9: 0 0 2 0 0 2 0 0
10: 0 1 0 1 1 1 0 1 0
11: 0 0 0 0 0 0 0 0 0 0
12: 0 2 1 1 0 2 0 1 1 2 0
13: 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 1 0 1 0 1 1 1 0 1 0 1 0
15: 0 0 1 0 1 1 0 0 1 1 0 1 0 0
16: 0 4 0 2 0 4 0 2 0 4 0 2 0 4 0
17: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18: 0 1 2 1 0 2 0 1 1 1 0 2 0 1 2 1 0
... (End)
-
period[lst_] := Module[{n, i, j}, n=Length[lst]; For[j=2, j <= n, j++, For[i=1, iJean-François Alcover, Feb 04 2015 *)
A290600
Irregular triangle T(n, k) read by rows: positive numbers non-coprime to A002808(n) and smaller than A002808(n), sorted increasingly.
Original entry on oeis.org
2, 2, 3, 4, 2, 4, 6, 3, 6, 2, 4, 5, 6, 8, 2, 3, 4, 6, 8, 9, 10, 2, 4, 6, 7, 8, 10, 12, 3, 5, 6, 9, 10, 12, 2, 4, 6, 8, 10, 12, 14, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 3, 6, 7, 9, 12, 14, 15, 18
Offset: 1
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 2
2 6 2 3 4
3 8 2 4 6
4 9 3 6
5 10 2 4 5 6 8
6 12 2 3 4 6 8 9 10
7 14 2 4 6 7 8 10 12
8 15 3 5 6 9 10 12
9 16 2 4 6 8 10 12 14
10 18 2 3 4 6 8 9 10 12 14 15 16
11 20 2 4 5 6 8 10 12 14 15 16 18
12 21 3 6 7 9 12 14 15 18
13 22 2 4 6 8 10 11 12 14 16 18 20
14 24 2 3 4 6 8 9 10 12 14 15 16 18 20 21 22
15 25 5 10 15 20
...
-
Table[With[{c = FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1]}, Select[Range[c - 1], ! CoprimeQ[#, c] &]], {n, 12}] // Flatten (* Michael De Vlieger, Sep 03 2017 *)
Showing 1-3 of 3 results.
Comments