A290601 Irregular triangle read by rows: T(n, k) gives the least positive integer imin such that the sequence {A290600(n, k)^i}_{i >= imin} (mod A002808(n)) is periodic.
2, 1, 1, 1, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 2, 4, 2, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 3, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2
Offset: 1
Examples
The irregular triangle T(n, k) begins (N(n) = A002808(n)): n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1 4 2 2 6 1 1 1 3 8 3 2 3 4 9 2 2 5 10 1 1 1 1 1 6 12 2 1 1 2 1 1 2 7 14 1 1 1 1 1 1 1 8 15 1 1 1 1 1 1 9 16 4 2 4 2 4 2 4 10 18 1 2 1 2 1 1 1 2 1 2 1 11 20 2 1 1 2 1 2 1 2 1 1 2 12 21 1 1 1 1 1 1 1 1 13 22 1 1 1 1 1 1 1 1 1 1 1 14 24 3 1 2 3 1 1 3 2 3 1 1 3 2 1 3 15 25 2 2 2 2 ... T(4, 1) = 2 because A290600(4, 1) = 3, A002808(4) = 9 and {3^i}_{i>=2} (mod 9) = {repeat(0)}, but 3^0 == 1 (mod 9) and 3^1 == 3 (mod 9). T(4, 2) = 2 because A290600(4, 2) = 6 and {6^i}_{i>=2} (mod 9) == {repeat(0)}, and 6^0 (mod 9) = 1, 6^1 (mod 9) = 6. Example for a proof of periodicity of type (1,6) for K = A290600(10, 1) = 2, N = A002808(10) = 18: 2^imin*(2^P - 1) == 0 (mod 18). gcd(2^imin, 18) = 2, and with imin = 1 one has 2^P == 1 (mod 9). Since gcd(2, 9) = 1, a solution exists (Euler): P = phi(9) = 6.
Comments