A290602 Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).
1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 4, 2, 2, 1, 1, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 3, 1, 2, 1, 1, 1, 6, 1, 3, 4, 2, 1, 1, 4, 1, 4, 2, 2, 1, 4, 6, 2, 1, 3, 6, 2, 1, 3, 10, 5, 10, 10, 2, 1, 1, 5, 5, 10, 5, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1
Offset: 1
Examples
The irregular triangle T(n, k) begins (N(n) = A002808(n)): n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1 4 1 2 6 2 1 1 3 8 1 1 1 4 9 1 1 5 10 4 2 1 1 4 6 12 2 2 1 1 2 1 1 7 14 3 3 2 1 1 6 6 8 15 4 2 1 2 1 4 9 16 1 1 1 1 1 1 1 10 18 6 1 3 1 2 1 1 1 6 1 3 11 20 4 2 1 1 4 1 4 2 2 1 4 12 21 6 2 1 3 6 2 1 3 13 22 10 5 10 10 2 1 1 5 5 10 5 14 24 2 2 1 1 2 1 1 1 2 2 1 1 2 2 1 15 25 1 1 1 1 ... T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4). T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6). The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6). The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin: n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 1 4 (2,1) 2 6 (1,2) (1,1) (1,1) 3 8 (3,1) (2,1) (3,1) 4 9 (2,1) (2,1) 5 10 (1,4) (1,2) (1,1) (1,1) (1,4) 6 12 (2,2) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) 7 14 (1,3) (1,3) (1,2) (1,1) (1,1) (1,6) (1,6) 8 15 (1,4) (1,2) (1,1) (1,2) (1,1) (1,4) 9 16 (4,1) (2,1) (4,1) (2,1) (4,1) (2,1) (4,1) 10 18 (1,6) (2,1) (1,3) (2,1) (1,2) (1,1) (1,1) (2,1) (1,6) (2,1) (1,3) 11 20 (2,4) (1,2) (1,1) (2,1) (1,4) (2,1) (1,4) (2,2) (1,2) (1,1) (2,4) 12 21 (1,6) (1,2) (1,1) (1,3) (1,6) (1,2) (1,1) (1,3) 13 22 (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5) ... ----------------------------------------------------------------------------------
Comments