cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290602 Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 4, 2, 2, 1, 1, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 3, 1, 2, 1, 1, 1, 6, 1, 3, 4, 2, 1, 1, 4, 1, 4, 2, 2, 1, 4, 6, 2, 1, 3, 6, 2, 1, 3, 10, 5, 10, 10, 2, 1, 1, 5, 5, 10, 5, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Aug 30 2017

Keywords

Comments

The length of row n is A290599(n).
See A290601 for the proof that this sequence is defined, and the definition of the type of periodicity (imin,P) with imin = A290601(n, k) and the period length P = T(n, k).

Examples

			The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n   N(n) \ k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
1   4         1
2   6         2  1  1
3   8         1  1  1
4   9         1  1
5   10        4  2  1  1  4
6   12        2  2  1  1  2  1  1
7   14        3  3  2  1  1  6  6
8   15        4  2  1  2  1  4
9   16        1  1  1  1  1  1  1
10  18        6  1  3  1  2  1  1  1  6  1  3
11  20        4  2  1  1  4  1  4  2  2  1  4
12  21        6  2  1  3  6  2  1  3
13  22       10  5 10 10  2  1  1  5  5 10  5
14  24        2  2  1  1  2  1  1  1  2  2  1  1  2  2  1
15  25        1  1  1  1
...
T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4).
T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6).
The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6).
The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin:
n   N(n) \ k    1     2      3      4     5     6     7     8     9      10    11
1   4         (2,1)
2   6         (1,2) (1,1)  (1,1)
3   8         (3,1) (2,1)  (3,1)
4   9         (2,1) (2,1)
5   10        (1,4) (1,2)  (1,1)  (1,1) (1,4)
6   12        (2,2) (1,2)  (1,1)  (2,1) (1,2) (1,1) (2,1)
7   14        (1,3) (1,3)  (1,2)  (1,1) (1,1) (1,6) (1,6)
8   15        (1,4) (1,2)  (1,1)  (1,2) (1,1) (1,4)
9   16        (4,1) (2,1)  (4,1)  (2,1) (4,1) (2,1) (4,1)
10  18        (1,6) (2,1)  (1,3)  (2,1) (1,2) (1,1) (1,1) (2,1) (1,6)  (2,1) (1,3)
11  20        (2,4) (1,2)  (1,1)  (2,1) (1,4) (2,1) (1,4) (2,2) (1,2)  (1,1) (2,4)
12  21        (1,6) (1,2)  (1,1)  (1,3) (1,6) (1,2) (1,1) (1,3)
13  22       (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5)
...
----------------------------------------------------------------------------------
		

Crossrefs