A290630 a(n+1) = a(n) + (final digit of greatest prime < a(n)); a(1)=3.
3, 5, 8, 15, 18, 25, 28, 31, 40, 47, 50, 57, 60, 69, 76, 79, 82, 91, 100, 107, 110, 119, 122, 125, 128, 135, 136, 137, 138, 145, 154, 155, 156, 157, 158, 165, 168, 175, 178, 181, 190, 191, 192, 193, 194, 197, 200, 209, 218, 219, 220, 221, 222, 223, 224, 227, 230, 239, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252
Offset: 1
Examples
a(2) = a(1) + gp(1) = 3 + 2 = 5. a(59) = 242 (composite), gp(59) = 241, and d(59) = 1. sp(59) = 251 is in the sequence because (sp(59) - a(59))/d(59) = (251 - 242)/1 = 9 (= m). Therefore a(59 + 9) = a(68) = 251. a(40) = 181 (prime), d'(40) = 1, gp(40) = 179, d(40) = 9. Then sp(40) = 191 is in the sequence because with r = 1, a(40) + d(40) + r*d'(40) = 181 + 9 + 1*1 = 191 = a(40+1+1) = a(42).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A[1]:= 3: for i from 2 to 100 do A[i]:= A[i-1] + (prevprime(A[i-1]) mod 10) od: seq(A[i],i=1..100); # Robert Israel, Aug 13 2019
-
Mathematica
NestList[# + Mod[NextPrime[#, -1], 10] &, 3, 68] (* Michael De Vlieger, Aug 19 2017 *)
-
PARI
lista(nn) = {print1(a = 3, ", "); for (n=2, nn, a = a + precprime(a-1) % 10; print1(a, ", "););} \\ Michel Marcus, Aug 19 2017
Formula
a(n+1) = a(n) + d(n) where d(n) = A007652(gp(n)); gp(n) = greatest prime < a(n).
Comments