A290692 Carmichael numbers of the form p - 2 where p is a prime number.
561, 2465, 656601, 1909001, 174352641, 230996949, 275283401, 939947009, 1534274841, 3264820001, 5860426881, 6025532241, 25536531021, 36709177121, 53388707681, 54519328481, 56222911361, 101536702401, 105528976961, 180481509681, 196866607601, 239862350001, 329245587161, 347469383801, 347511324161
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5901 (terms below 10^22 calculated using data from Claude Goutier; terms 1..591 from Robert Israel)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- R. G. E. Pinch, Carmichael numbers up to 10^16, 10^16 to 10^17, 10^17 to 10^18
- Andrzej Rotkiewicz, On pseudoprimes having special forms and a solution of K. Szymiczek's problem, Acta Mathematica Universitatis Ostraviensis, Vol. 13, No. 1 (2005), pp. 57-71.
- Index entries for sequences related to Carmichael numbers.
Programs
-
Maple
# Using data file from Richard Pinch infile:= "carmichael-16": Res:= NULL; do S:= readline(infile); if S = 0 then break fi; L:= sscanf(S,"%d"); if nops(L) <> 1 then break fi; if isprime(L[1]+2) then Res:= Res, L[1]; fi od: Res; # Robert Israel, Jun 03 2019
-
Mathematica
Cases[Range[1, 10^7, 2], n_ /; And[Mod[n, CarmichaelLambda@ n] == 1, ! PrimeQ@ n, PrimeQ[n + 2]]] (* Michael De Vlieger, Aug 09 2017, after Artur Jasinski at A002997 *)
-
PARI
isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1} isok(n) = isprime(n+2) && isA002997(n)
Extensions
More terms from Robert Israel, Jun 03 2019
Comments