cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290692 Carmichael numbers of the form p - 2 where p is a prime number.

Original entry on oeis.org

561, 2465, 656601, 1909001, 174352641, 230996949, 275283401, 939947009, 1534274841, 3264820001, 5860426881, 6025532241, 25536531021, 36709177121, 53388707681, 54519328481, 56222911361, 101536702401, 105528976961, 180481509681, 196866607601, 239862350001, 329245587161, 347469383801, 347511324161
Offset: 1

Views

Author

Altug Alkan, Aug 09 2017

Keywords

Comments

Rotkiewicz mentioned the first six terms of this sequence at the end of page 59 of his article (Links section). But his list includes 2821 and 46657 (2823 = 3 * 941 and 46659 = 3 * 103 * 151), which should not be there.
Carmichael numbers of the form p + 2 where p is a prime number are 1105, 2821, 6601, 29341, 41041, 52633, ... (see also A272754 for corresponding prime numbers).

Crossrefs

Programs

  • Maple
    # Using data file from Richard Pinch
    infile:= "carmichael-16": Res:= NULL;
    do
      S:= readline(infile);
      if S = 0 then break fi;
      L:= sscanf(S,"%d");
      if nops(L) <> 1 then break fi;
      if isprime(L[1]+2) then Res:= Res, L[1]; fi
    od:
    Res; # Robert Israel, Jun 03 2019
  • Mathematica
    Cases[Range[1, 10^7, 2], n_ /; And[Mod[n, CarmichaelLambda@ n] == 1, ! PrimeQ@ n, PrimeQ[n + 2]]] (* Michael De Vlieger, Aug 09 2017, after Artur Jasinski at A002997 *)
  • PARI
    isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
    isok(n) = isprime(n+2) && isA002997(n)

Extensions

More terms from Robert Israel, Jun 03 2019