A290694 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).
0, 1, 0, 0, 1, 0, 0, -1, 2, 0, 0, 1, -2, 3, 0, 0, -1, 14, -9, 24, 0, 0, 1, -10, 75, -48, 20, 0, 0, -1, 62, -135, 312, -300, 720, 0, 0, 1, -42, 903, -1680, 2800, -2160, 630, 0, 0, -1, 254, -1449, 40824, -21000, 27360, -17640, 4480
Offset: 0
Examples
Triangle starts: [0, 1] [0, 0, 1] [0, 0, -1, 2] [0, 0, 1, -2, 3] [0, 0, -1, 14, -9, 24] [0, 0, 1, -10, 75, -48, 20] [0, 0, -1, 62, -135, 312, -300, 720] The first few polynomials are: P_0(x) = x. P_1(x) = (1/2)*x^2. P_2(x) = -(1/2)*x^2 + (2/3)*x^3. P_3(x) = (1/2)*x^2 - 2*x^3 + (3/2)*x^4. P_4(x) = -(1/2)*x^2 + (14/3)*x^3 - 9*x^4 + (24/5)*x^5. P_5(x) = (1/2)*x^2 - 10*x^3 + (75/2)*x^4 - 48*x^5 + 20*x^6. P_6(x) = -(1/2)*x^2 + (62/3)*x^3 - 135*x^4 + 312*x^5 - 300*x^6 + (720/7)*x^7. Evaluated at x = 1 this gives an additive decomposition of the Bernoulli numbers: B(0) = 1 = 1. B(1) = 1/2 = 1/2. B(2) = 1/6 = -1/2 + 2/3. B(3) = 0 = 1/2 - 2 + 3/2. B(4) = -1/30 = -1/2 + 14/3 - 9 + 24/5. B(5) = 0 = 1/2 - 10 + 75/2 - 48 + 20. B(6) = 1/42 = -1/2 + 62/3 - 135 + 312 - 300 + 720/7.
Links
- Peter Luschny, Illustrating A290694.
Crossrefs
Programs
-
Maple
BG_row := proc(m, n, frac, val) local F, g, v; F := (n, x) -> add((-1)^(n-k)*Stirling2(n,k)*k!*x^k, k=0..n): g := x -> int(F(n,x)^m, x): `if`(val = "val", subs(x=1, g(x)), [seq(coeff(g(x),x,j), j=0..m*n+1)]): `if`(frac = "num", numer(%), denom(%)) end: seq(BG_row(1, n, "num", "val"), n=0..16); # A164555 seq(BG_row(1, n, "den", "val"), n=0..16); # A027642 seq(print(BG_row(1, n, "num", "poly")), n=0..12); # A290694 (this seq.) seq(print(BG_row(1, n, "den", "poly")), n=0..12); # A290695 # Alternatively: T_row := n -> numer(PolynomialTools:-CoefficientList(add((-1)^(n-j+1)*Stirling2(n, j-1)*(j-1)!*x^j/j, j=1..n+1), x)): for n from 0 to 6 do T_row(n) od;
-
Mathematica
T[n_, k_] := If[k > 0, Numerator[StirlingS2[n, k - 1]*(k - 1)! / k], 0]; Table[T[n, k], {n, 0, 8}, {k, 0, n+1}] // Flatten
Formula
T(n, k) = Numerator(Stirling2(n, k - 1)*(k - 1)!/k) if k > 0 else 0; for n >= 0 and 0 <= k <= n+1.
Comments