A290725 Numbers with 3k digits for some k such that the first k digits minus the middle k digits equals the last k digits.
101, 110, 202, 211, 220, 303, 312, 321, 330, 404, 413, 422, 431, 440, 505, 514, 523, 532, 541, 550, 606, 615, 624, 633, 642, 651, 660, 707, 716, 725, 734, 743, 752, 761, 770, 808, 817, 826, 835, 844, 853, 862, 871, 880, 909, 918, 927, 936, 945, 954, 963, 972, 981, 990, 100010, 100109, 100208, 100307
Offset: 1
Examples
987654333 is a member because 987-654=333.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
A286846 is a subsequence.
Programs
-
Maple
N:= 100: # to get the first N terms count:= 0: Res:= NULL: for d from 1 while count < N do for x1 from 10^(d-1) to 10^d-1 while count < N do for x2 from 0 to x1 while count < N do x3:= x1 - x2; count:= count+1; Res:= Res, x1*10^(2*d)+x2*10^d+x3; od od od: Res; # Robert Israel, Aug 09 2017
-
Mathematica
kd3Q[n_]:=Module[{c=FromDigits/@Partition[IntegerDigits[n], IntegerLength[ n]/3]},c[[1]]-c[[2]]==c[[3]]]; Table[Select[Range[10^(3n-1),10^(3n)-1], kd3Q],{n,2}]//Flatten (* Harvey P. Dale, Feb 25 2020 *)
Extensions
More terms from Robert Israel, Aug 09 2017