cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290764 Number of (non-null) connected induced subgraphs in the 2 X n king graph.

Original entry on oeis.org

3, 15, 54, 174, 537, 1629, 4908, 14748, 44271, 132843, 398562, 1195722, 3587205, 10761657, 32285016, 96855096, 290565339, 871696071, 2615088270, 7845264870, 23535794673, 70607384085, 211822152324, 635466457044, 1906399371207, 5719198113699, 17157594341178
Offset: 1

Views

Author

Eric W. Weisstein, Aug 10 2017

Keywords

Comments

a(n) is also the number of 4-cycles in the (n+1)-Dorogovtsev-Goltsev-Mendes graph (using the indexing convention that the 0-Dorogovtsev-Goltsev-Mendes graph is P_2). - Eric W. Weisstein, Dec 06 2023

Crossrefs

Cf. A003462(n) (3-cycles), A367967(n) (5-cycles), A367968(n) (6-cycles).

Programs

  • Mathematica
    Table[3/4 (3^(n + 1) - 2 n - 3), {n, 20}]
    LinearRecurrence[{5, -7, 3}, {3, 15, 54}, 40]
    CoefficientList[Series[-3/((-1 + x)^2 (-1 + 3 x)), {x, 0, 20}], x]

Formula

a(n) = 3/4*(3^(n + 1) - 2*n - 3).
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).
G.f.: -((3 x)/((-1 + x)^2 (-1 + 3 x))).