cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290776 Triangle T(n,k) read by rows: the number of connected, loopless, non-oriented, vertex-labeled graphs with n >= 0 edges and k >= 1 vertices, allowing multi-edges.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 7, 16, 0, 1, 12, 63, 125, 0, 1, 18, 162, 722, 1296, 0, 1, 25, 341, 2565, 10140, 16807, 0, 1, 33, 636, 7180, 47100, 169137, 262144, 0, 1, 42, 1092, 17335, 168285, 987567, 3271576, 4782969, 0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000
Offset: 0

Views

Author

R. J. Mathar, Aug 10 2017

Keywords

Comments

This is the vertex-labeled companion to A191646.

Examples

			The triangle starts in row n=0 with 1 <= k <= n+1 vertices as
  1;
  0, 1;
  0, 1,  3;
  0, 1,  7,   16;
  0, 1, 12,   63,   125;
  0, 1, 18,  162,   722,   1296;
  0, 1, 25,  341,  2565,  10140,   16807;
  0, 1, 33,  636,  7180,  47100,  169137,   262144;
  0, 1, 42, 1092, 17355, 168285,  987567,  3271576,  4782969;
  0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000;
  ...
		

Crossrefs

Cf. A055998 (k=3), A000272 (diagonal), A060091 (k=4?), A060093 (k=5?).

Programs

  • Mathematica
    S[m_, n_] := Binomial[Binomial[m, 2] + n - 1, n];
    R[nn_] := Module[{cc = Array[0&, {nn, nn}]}, cc[[1, 1]] = 1; For[m = 1, m <= nn, m++, For[n = 1, n <= nn-1, n++, cc[[m, n+1]] = S[m, n] - S[m-1, n] - Sum[Sum[Binomial[m-1, i-1]*cc[[i, j+1]]*S[m-i, n-j], {j, 1, n}], {i, 2, m-1}]]]; cc // Transpose];
    A = R[10];
    Table[A[[n, k]], {n, 1, Length[A]}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 13 2018, after Andrew Howroyd *)
  • PARI
    \\ here S(m,n) is m nodes with n edges, not necessarily connected
    S(m,n)={ binomial(binomial(m,2) + n - 1, n) }
    R(N)={ my(C=matrix(N,N)); C[1,1]=1; for(m=1, N, for(n=1, N-1, C[m,n+1] = S(m,n) - S(m-1,n) - sum(i=2, m-1, sum(j=1, n, binomial(m-1, i-1)*C[i,j+1]*S(m-i, n-j))))); C~; }
    { my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k],", ")); print) } \\ Andrew Howroyd, May 13 2018

Extensions

Terms a(34) and beyond from Andrew Howroyd, May 13 2018