cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290777 a(n) = n-th Carlitz-Riordan q-Catalan number (recurrence version) for q = n.

Original entry on oeis.org

1, 1, 3, 43, 5885, 12833546, 583552122727, 667480099386451779, 22507185898866512901924729, 25700910736350654917922270058287454, 1123582754598967452437582737448130799606015691, 2098715344599001562385695830901626594365732485934286582686
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2017

Keywords

Crossrefs

Main diagonal of A290759.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(j, k)*b(n-j-1, k)*k^j, j=0..n-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..12);
  • Mathematica
    b[n_, k_]:=b[n, k]=If[n==0, 1, Sum[b[j, k] b[n - j - 1, k]*k^j, {j, 0, n - 1}]]; Table[b[n, n], {n, 0, 15}] (* Indranil Ghosh, Aug 10 2017 *)
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, k):
        if n == 0:
            return 1
        return sum(b(j, k) * b(n - j - 1, k) * k**j for j in range(n))
    def a(n): return b(n, n)
    print([a(n) for n in range(16)]) # Indranil Ghosh, Aug 10 2017

Formula

a(n) = [x^n] 1/(1-x/(1-n*x/(1-n^2*x/(1-n^3*x/(1-n^4*x/(1- ... )))))).
a(n) = A290759(n,n) = A090182(2n,n).
a(n) ~ n^(n*(n-1)/2). - Vaclav Kotesovec, Aug 19 2017