A290779 Number of 6-cycles in the n-triangular honeycomb bishop graph.
0, 0, 1, 57, 486, 2360, 8394, 24354, 61104, 137412, 283635, 546403, 994422, 1725516, 2875028, 4625700, 7219152, 10969080, 16276293, 23645709, 33705430, 47228016, 65154078, 88618310, 118978080, 157844700, 207117495, 269020791, 346143942, 441484516, 558494760
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Mathematica
Table[Binomial[n + 1, 4] (-62 + 11 n - 109 n^2 + 40 n^3)/70, {n, 20}] LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 1, 57, 486, 2360, 8394, 24354}, 40] CoefficientList[Series[(x^2 + 49 x^3 + 58 x^4 + 12 x^5)/(-1 + x)^8, {x, 0, 20}], x]
-
PARI
a(n)=n*(40*n^6 - 189*n^5 + 189*n^4 + 105*n^3 - 105*n^2 + 84*n - 124)/1680 \\ Charles R Greathouse IV, Aug 10 2017
Formula
a(n) = binomial(n + 1, 4)*(-62 + 11*n - 109*n^2 + 40*n^3)/70.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: (x (x^2 + 49 x^3 + 58 x^4 + 12 x^5))/(-1 + x)^8.