A290787 a(n) is the position of the first occurrence of n^3 in the concatenation of the positive integers in decimal representation.
1, 8, 44, 83, 265, 378, 58, 267, 783, 2890, 289, 5802, 6781, 9866, 12390, 15274, 4288, 9223, 22764, 30890, 6595, 42130, 49725, 58010, 1575, 76770, 87305, 7670, 110835, 123890, 53786, 127309, 168575, 11048, 10389, 1884, 164216, 116326, 86857, 188924, 73351, 15241, 30690, 81318, 45139, 157378, 511828, 41849, 594784, 638890
Offset: 1
Examples
3^3 = 27, so a(3) = 44 because the digit string "27" first occurs beginning at the 44th digit of the string s = "12345678910111213141516171819202122232425262728...": . . 1 2 3 4 Position: 12345678901234567890123456789012345678901234567... vv s: 12345678910111213141516171819202122232425262728... ^^
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..100 from Zhining Yang)
Programs
-
Mathematica
T = StringJoin @@ ToString /@ Range@ 700000; Table[StringPosition[T, ToString[ n^3], 1][[1, 1]], {n, 50}] (* Giovanni Resta, Aug 11 2017 *)
-
VBA
Sub test() Dim i&, t$, s$(1 To 125000) For i = 1 To 125000 s(i) = i Next t = Join(s, "") For i = 1 To 50 Debug.Print InStr(t, i ^ 3); ","; Next End Sub